Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.337
Filter
1.
Mol Cancer ; 23(1): 188, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243032

ABSTRACT

Triple negative breast cancer (TNBC) is a particularly lethal breast cancer (BC) subtype driven by cancer stem cells (CSCs) and an immunosuppressive microenvironment. Our study reveals that nucleus accumbens associated protein 1 (NAC1), a member of the BTB/POZ gene family, plays a crucial role in TNBC by maintaining tumor stemness and influencing myeloid-derived suppressor cells (MDSCs). High NAC1 expression correlates with worse TNBC prognosis. NAC1 knockdown reduced CSC markers and tumor cell proliferation, migration, and invasion. Additionally, NAC1 affects oncogenic pathways such as the CD44-JAK1-STAT3 axis and immunosuppressive signals (TGFß, IL-6). Intriguingly, the impact of NAC1 on tumor growth varies with the host immune status, showing diminished tumorigenicity in natural killer (NK) cell-competent mice but increased tumorigenicity in NK cell-deficient ones. This highlights the important role of the host immune system in TNBC progression. In addition, high NAC1 level in MDSCs also supports TNBC stemness. Together, this study implies NAC1 as a promising therapeutic target able to simultaneously eradicate CSCs and mitigate immune evasion.


Subject(s)
Cell Proliferation , Myeloid-Derived Suppressor Cells , Neoplastic Stem Cells , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Humans , Animals , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Female , Mice , Myeloid-Derived Suppressor Cells/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Prognosis , Cell Movement , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Neoplasm Proteins
2.
Water Res ; 266: 122321, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39217645

ABSTRACT

Lakes play a crucial role in the nitrogen (N) cycle, and eutrophication disrupts the balance of the nitrogen cycle within lakes, including both the N removal process and the N supplement process. However, the mechanisms by which different nutrient levels affect seasonal nitrogen variations in the water columns are not clear, especially for long-term and large- scale studies. In this study, we used 206 independent spatial samples from a total of 108 subtropical shallow lakes from four surveys in the middle and lower reaches of the Yangtze River, as well as time-case study data from Lake Taihu and Lake Donghu of up to 23 and 14 years, respectively, to analyze the changes in summer TN compared to spring (delta TN). Delta TN was significantly negatively correlated with initial spring TN concentrations, with similar trends observed in both space and time. Furthermore, the slopes of spring TN vs. delta TN varied little across lakes in both time and space, suggesting a consistent relationship between initial spring TN and summer TN changes. When initial TN or TN: TP ratio was low, N fixation by algae played a significant role in compensating for summer N removal, thus mitigating summer N reductions; when TN was high or TN: TP ratio was high, ammonia stress reduced the compensatory effect of algae and denitrification played a significant role in summer N removal, thus increasing summer N reductions. Our study suggested that no matter what the initial conditions are, lakes tend to evolve towards a common nutrient status through biological regulation.

3.
Phys Chem Chem Phys ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221626

ABSTRACT

In this study, we developed a flexible cathode for fabricating high-performance ternary organic solar cells (OSCs). With solvent engineering and acid treatment, the conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrode was significantly enhanced with the sheet resistance reduced from 1081 to 83 Ω sq-1. After being coated with polyethylenimine, work function of the PEDOT:PSS electrode was tuned from -5.07 to -4.12 eV, which is beneficial for electron collection in OSCs. With this technique, the OSCs (on glass) showed an average power conversion efficiency (PCE) of 16.3%, which is comparable to that of conventional inverted OSCs with commonly used indium-tin oxide and sol-gel-processed zinc oxide. However, the processing temperature of the inverted OSCs was dramatically lowered from 200 to 120 °C. The flexible OSCs (on polyethylene naphthalate/PEDOT:PSS/PEIE) exhibited a high PCE of 14.1%. After being bended for 300 cycles, the PCE was only degraded by 8.5%, indicating the excellent bendability of the flexible OSCs with the organic cathode.

4.
Hortic Res ; 11(9): uhae182, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39247883

ABSTRACT

Grapevine (Vitis vinifera L.,) is among the world's leading fruit crops. The production of grapes is severely affected by many diseases including gray mold, caused by the necrotrophic fungus Botrytis cinerea. Although all Vitis species can be hosts for B. cinerea, V. vinifera are particularly susceptible. Accordingly, this disease poses a significant threat to the grape industry and causes substantial economic losses. Development of resistant V. vinifera cultivars has progressed from incidental selection by farmers, to targeted selection through the use of statistics and experimental design, to the employment of genetic and genomic data. Emerging technologies such as marker-assisted selection and genetic engineering have facilitated the development of cultivars that possess resistance to B. cinerea. A promising method involves using the CRISPR/Cas9 system to induce targeted mutagenesis and develop genetically modified non-transgenic crops. Hence, scientists are now engaged in the active pursuit of identifying genes associated with susceptibility and resistance. This review focuses on the known mechanisms of interaction between the B. cinerea pathogen and its grapevine host. It also explores innate immune systems that have evolved in V. vinifera, with the objective of facilitating the rapid development of resistant grapevine cultivars.

5.
Article in English | MEDLINE | ID: mdl-39235044

ABSTRACT

This single-center, randomized, open, two-preparation, single-dose, two-period, self-crossover trial aimed to assess the bioequivalence and safety of the test (T) preparation compared to the reference (R) preparation following intravenous injection in healthy subjects under fasting conditions. Twenty-four healthy subjects were enrolled in the study and subjects were randomly divided into two groups at a 1:1 ratio and were administered once per period, with an 8-day washout period. During each period, serum drug concentrations were detected for pharmacokinetic analysis and adverse events were recorded for safety analysis. The 90% confidence intervals for the geometric mean ratios (T:R) of maximum serum concentration, area under the serum concentration-time curve from time zero to the last measurable concentration, and area under the serum concentration-time curve from time zero to infinite time fell within the predefined bioequivalence range of 80%-125%, indicating bioequivalence between the T and R preparation under fasting conditions. Additionally, four subjects (16.7%) experienced five instances of adverse events in the T group, while five subjects (21.7%) experienced five instances of adverse events in the R group. This trial indicated the potential bioequivalence between the T and R products under fasting conditions, based on pharmacokinetic and safety profile.

6.
Phys Rev Lett ; 133(8): 083403, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39241723

ABSTRACT

We develop a general theory of Fermi polarons at nonzero temperature, including particle-hole excitations of the Fermi sea shakeup to arbitrarily high orders. The exact set of equations of the spectral function is derived by using both Chevy ansatz and diagrammatic approach, and their equivalence is clarified to hold in free space only, with an unregularized infinitesimal interaction strength. The correction to the polaron spectral function arising from two-particle-hole excitations is explicitly examined for an exemplary case of Fermi polarons in one-dimensional optical lattices. We find quantitative improvements at low temperatures with the inclusion of two-particle-hole excitations, in both polaron energies and decay rates. Our exact theory of Fermi polarons with arbitrary orders of particle-hole excitations might be used to better understand the intriguing polaron dynamical responses in two or three dimensions, whether in free space or within lattices.

7.
Neural Regen Res ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39104167

ABSTRACT

Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage. However, during minimally invasive surgery, recombinant tissue plasminogen activator may come into contact with brain tissue. Therefore, a thorough assessment of its safety is required. In this study, we established a mouse model of intracerebral hemorrhage induced by type VII collagenase. We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage, reduced pathological damage, and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma. In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin, the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis, autophagy, and endoplasmic reticulum stress. Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons. Moreover, the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis, autophagy, and endoplasmic reticulum stress. Furthermore, to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects, various inhibitors were used to target distinct domains. It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway. These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage, possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.

8.
J Transl Med ; 22(1): 729, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103909

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is highly prevalent in individuals with schizophrenia (SZ), leading to negative consequences like premature mortality. Gut dysbiosis, which refers to an imbalance of the microbiota, and chronic inflammation are associated with both SZ and MetS. However, the relationship between gut dysbiosis, host immunological dysfunction, and SZ comorbid with MetS (SZ-MetS) remains unclear. This study aims to explore alterations in gut microbiota and their correlation with immune dysfunction in SZ-MetS, offering new insights into its pathogenesis. METHODS AND RESULTS: We enrolled 114 Chinese patients with SZ-MetS and 111 age-matched healthy controls from Zhejiang, China, to investigate fecal microbiota using Illumina MiSeq sequencing targeting 16 S rRNA gene V3-V4 hypervariable regions. Host immune responses were assessed using the Bio-Plex Pro Human Cytokine 27-Plex Assay to examine cytokine profiles. In SZ-MetS, we observed decreased bacterial α-diversity and significant differences in ß-diversity. LEfSe analysis identified enriched acetate-producing genera (Megamonas and Lactobacillus), and decreased butyrate-producing bacteria (Subdoligranulum, and Faecalibacterium) in SZ-MetS. These altered genera correlated with body mass index, the severity of symptoms (as measured by the Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms), and triglyceride levels. Altered bacterial metabolic pathways related to lipopolysaccharide biosynthesis, lipid metabolism, and various amino acid metabolism were also found. Additionally, SZ-MetS exhibited immunological dysfunction with increased pro-inflammatory cytokines, which correlated with the differential genera. CONCLUSION: These findings suggested that gut microbiota dysbiosis and immune dysfunction play a vital role in SZ-MetS development, highlighting potential therapeutic approaches targeting the gut microbiota. While these therapies show promise, further mechanistic studies are needed to fully understand their efficacy and safety before clinical implementation.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Schizophrenia , Adult , Female , Humans , Male , Middle Aged , Case-Control Studies , China , Comorbidity , Cytokines/metabolism , Dysbiosis/microbiology , Dysbiosis/immunology , Dysbiosis/complications , East Asian People , Feces/microbiology , Immunity , Metabolic Syndrome/microbiology , Metabolic Syndrome/immunology , Metabolic Syndrome/complications , Schizophrenia/microbiology , Schizophrenia/immunology , Schizophrenia/complications
9.
Nat Commun ; 15(1): 6620, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103321

ABSTRACT

Microorganisms consume and transform dissolved organic matter (DOM) into various forms. However, it remains unclear whether the ecological patterns and drivers of DOM chemodiversity are analogous to those of microbial communities. Here, a large-scale investigation is conducted along the Chinese coasts to resolve the intrinsic linkages among the complex intertidal DOM pools, microbial communities and environmental heterogeneity. The abundance of DOM molecular formulae best fits log-normal distribution and follows Taylor's Law. Distance-decay relationships are observed for labile molecular formulae, while latitudinal diversity gradients are noted for recalcitrant molecular formulae. Latitudinal patterns are also observed for DOM molecular features. Negative cohesion, bacterial diversity, and molecular traits are the main drivers of DOM chemodiversity. Stochasticity analyses demonstrate that determinism dominantly shapes the DOM compositional variations. This study unveils the intrinsic mechanisms underlying the intertidal DOM chemodiversity and microbial communities from ecological perspectives, deepening our understanding of microbially driven chemical ecology.


Subject(s)
Ecosystem , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Organic Chemicals/metabolism , Biodiversity , China , Microbiota , Seawater/microbiology
10.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39185929

ABSTRACT

An adaptive event-triggered security control method is proposed for networked robotic teleoperation systems subject to time-varying delays and false data injection (FDI) attacks. An event-triggered scheme is designed via the position and velocity signals of the master and slave robots, where the triggering thresholds can change adaptively with the system states. The position and velocity triggered signals and the feedback error between the operator and the environment forces are utilized to detect whether the transmitted signals suffered from FDI attacks. Then, a switching controller is designed, which is able to adopt the corresponding control strategy according to the corresponding detection result. The stability of the system and the convergence of the tracking errors are proved through Lyapunov functions, and the proposed method is validated through practical experiments. The proposed method is able to adaptively adjust the triggering frequency and effectively reduce the transmitted data, thus saving the network resources. Meanwhile, it can ensure the stability of networked teleoperation systems under time-varying delays and FDI attacks, as well as the position and force tracking performance.

11.
World J Gastroenterol ; 30(29): 3488-3510, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39156502

ABSTRACT

BACKGROUND: Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM: To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS: A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS: The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION: The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Hyperuricemia , Leeches , Animals , Hyperuricemia/drug therapy , Hyperuricemia/blood , Hyperuricemia/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Male , Leeches/microbiology , Uric Acid/blood , Kidney/drug effects , Kidney/metabolism , Kidney/microbiology , Metabolomics/methods , RNA, Ribosomal, 16S/genetics , Humans , Dysbiosis , Metabolome/drug effects
12.
Sci Total Environ ; 949: 175159, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094650

ABSTRACT

Bisphenol P (BPP) has been detected in human biological samples; however studies on its nephrotoxicity are scarce. Given the susceptibility of kidneys to endocrine-disrupting chemicals, there is an urgent need to investigate the renal toxicity of BPP. This study aimed to evaluate the effects of different concentrations of BPPs on the kidneys of C57BL/6 mice and elucidate the underlying mechanisms of renal damage using a combination of mouse renal transcriptomic data and human renal proximal tubular epithelial cells (HK-2). Mice were exposed to BPP (0, 0.3, 30, 3000 µg/kg bw/d) via gavage for 5 weeks. Renal injury was assessed based on changes in body and kidney weights, serum renal function indices, and histopathological examination. Transcriptomic analysis identified differentially expressed genes and pathways, whereas cellular assays were used to measure cell viability, reactive oxygen species (ROS), apoptosis, and the expression of key genes and proteins. The results show that BPP exposure induces renal injury, as evidenced by increased body weight, abnormal renal function indices, and renal tissue damage. Transcriptomic analysis revealed alterations in genes and pathways related to oxidative stress, p53 signaling, autophagy, and apoptosis. Cellular experiments confirmed that BPP induces oxidative stress and apoptosis. Furthermore, BPP exposure significantly inhibits autophagy, potentially exacerbating apoptosis and contributing to kidney injury. Treatment with a ROS inhibitor (N-Acetylcysteine, NAC) mitigated BPP-induced autophagy inhibition and apoptosis, implicating oxidative stress as a key factor. BPP exposure may lead to renal injury through excessive ROS accumulation, oxidative stress, inflammatory responses, autophagy inhibition, and increased apoptosis. The effects of NAC highlight the role of oxidative stress in BPP-induced nephrotoxicity. These findings enhance our understanding of BPP-induced nephrotoxicity and underscore the need to control BPP exposure to prevent renal disease. This study emphasized the importance of evaluating the safety of new Bisphenol A analogs, including BPP, in environmental toxicology.


Subject(s)
Epithelial Cells , Mice, Inbred C57BL , Oxidative Stress , Phenols , Animals , Humans , Mice , Apoptosis/drug effects , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Epithelial Cells/drug effects , Kidney/cytology , Kidney/drug effects , Kidney/pathology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Oxidative Stress/drug effects , Phenols/toxicity , Reactive Oxygen Species/metabolism
13.
Chem Commun (Camb) ; 60(68): 9034-9037, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39101504

ABSTRACT

Three luminescent copper(I) halides featuring distinct polyhedra were obtained via solvent volatilization, in which consecutive phase transformations of copper(I)-iodide units were triggered by methanol, along with visual luminescence switches, enabling applicability in information encryption and anti-counterfeiting. Such a multiple structural regulation in metal halides provides versatile design principles for photoluminescence tuning.

14.
Genes (Basel) ; 15(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39202344

ABSTRACT

Long-chain acyl-CoA synthetases (LACSs) are essential enzymes that activate free fatty acids to fatty acyl-CoA thioesters, playing key roles in fatty acid (FA) catabolism, lipid synthesis and storage, epidermal wax synthesis, and stress tolerance. Despite their importance, comprehensive information about LACS genes in maize, a primary food crop, remains scarce. In the present work, eleven maize LACS genes were identified and mapped across five chromosomes. Three pairs of segmentally duplicated genes were detected in the maize LACS gene family, which underwent significant purifying selection (Ka/Ks < 1). Subsequently, phylogenetic analysis indicated that ZmLACS genes were divided into four subclasses, as supported by highly conserved motifs and gene structures. On the basis of the PlantCARE database, analysis of the ZmLACS promoter regions revealed various cis-regulatory elements related to tissue-specific expression, hormonal regulation, and abiotic stress response. RT-qPCR analysis showed that ZmLACS genes exhibit tissue-specific expression patterns and respond to diverse abiotic stresses including drought and salt, as well as phytohormone abscisic acid. Furthermore, using the STRING database, several proteins involved in fatty acid and complex lipid synthesis were identified to be the potential interaction partners of ZmLACS proteins, which was also confirmed by the yeast two-hybrid (Y2H) assay, enhancing our understanding of wax biosynthesis and regulatory mechanisms in response to abiotic stresses in maize. These findings provide a comprehensive understanding of ZmLACS genes and offer a theoretical foundation for future research on the biological functions of LACS genes in maize environmental adaptability.


Subject(s)
Coenzyme A Ligases , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Chromosomes, Plant/genetics , Droughts
15.
Hered Cancer Clin Pract ; 22(1): 13, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160638

ABSTRACT

BACKGROUND: Somatic mutations in the EGFR gene occur in about 50% of non-small cell lung cancers, with the T790M mutation significantly contributing to secondary resistance against EGFR-TKI drugs. However, EGFR T790M germline mutations rarely occur. CASE PRESENTATION: In this study, we report a case of a lung adenocarcinoma family lineage linked to a germline EGFR T790M mutation. The main subject was diagnosed with stage IV lung adenocarcinoma and experienced a 19-month period without disease progression while treated with Osimertinib. We collected both clinicopathological and familial data from a patient with lung adenocarcinoma. Next-generation sequencing of 40 key genes was performed on the proband's tumor tissue. To detect EGFR germline mutations, Sanger sequencing was conducted on peripheral blood mononuclear cells from the proband and his two daughters. Mutations such as EGFR T790M, EGFR 19-Del, TP53, and PIK3CA were identified in the proband's lung cancer tissue. Additionally, germline EGFR T790M mutations were confirmed in the proband and his daughters through sequencing of their peripheral blood samples. CT scans revealed multiple pulmonary nodules in both daughters. CONCLUSIONS: These observations suggest that germline mutations in EGFR T790M could be strongly linked to a familial predisposition to lung cancer.

16.
Oncogene ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164524

ABSTRACT

Interest in the use of proteolysis-targeting chimeras (PROTACs) in cancer therapy has increased in recent years. Targeting bromodomain and extra terminal domain (BET) proteins, especially bromodomain-containing protein 4 (BRD4), has shown inhibitory effects on basal-like breast cancer (BLBC). However, the bioavailability of BRD4 PROTACs is restricted by their non-selective biodegradability and low tumor-targeting ability. We demonstrated that 6b (BRD4 PROTAC) suppresses BLBC cell growth by targeting BRD4, but not BRD2 and BRD3, for cereblon (CRBN)-mediated ubiquitination and proteasomal degradation. Compound 6b also inhibited expression of Krüppel-like factor 5 (KLF5) transcription factor, a key oncoprotein in BLBC, controlled by BRD4-mediated super-enhancers. Moreover, 6b inhibited HCC1806 tumor growth in a xenograft mouse model. The combination of 6b and KLF5 inhibitors showed additive effects on BLBC. These results suggest that BRD4-specific PROTAC can effectively inhibit BLBC by downregulating KLF5, and that 6b has potential as a novel therapeutic drug for BLBC.

17.
Poult Sci ; 103(11): 104132, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39208485

ABSTRACT

Resistance of Escherichia coli (E.coli) to antibiotics has steadily increased over time; hence, there is an urgent need to develop safer alternatives to antibiotics. The present study aimed to evaluate the effect of luteolin (Lut) on E. coli from chicken. The bioactive compound Lut from Humulus scandens was selected by network pharmacology and molecular docking analyses. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) were used to observe the effects of Lut on the morphology and structure of E. coli cells. The data-independent acquisition (DIA) method was used to analyze protein expression level of E. coli before and after Lut treatment. The in vivo evaluation of the antibacterial, anti-inflammatory, and oxidative effects of Lut on E.coli was conducted using E.coli isolated strains infected the SPF chicken model. The network pharmacology analysis revealed 19 distinctive bioactive compounds such as Lut and ß-sitosterol in H. scandens; furthermore, 30 core targets were selected from H. scandens. The KEGG enrichment analysis showed that the PI3K-Akt, TNF, MAPK, IL-17, JAK-STAT, and HIF-1 pathways were related from H. scandens. Based on the results of the network pharmacology analysis, Lut was subjected to screening by molecular docking analysis to determine its antibacterial effect on E. coli and the associated mechanism of action. The minimum inhibitory concentration (MIC) of Lut against E. coli standard strains was 500 µg/mL. SEM, TEM, and CLSM results indicated that Lut damaged the cell wall and cell membrane of E. coli strains and destroyed the cell structure, leading to cell death.The expression level of membrane structure, Phenylalanine metabolism and some other metabolic pathways in E.coli changed after treatment with Lut (P < 0.05). In vivo experiments in the SPF chicken model showed that Lut treatment alleviated the decline in the growth performance of chickens (P < 0.05), prevented pathological changes in the correspond ding organs and suppressed the inflammatory response induced by E. coli infection (P < 0.05), improved the immunity and antioxidant capacity of chickens (P < 0.05), and protected them against infection with E. coli strains. To summarize, Lut from H. scandens can inhibit E. coli growth by damaging the cell membrane structureand affecting the expression level of some metabolic proteins. In vivo experiments also showed that Lut can significantly reduce the damage caused by E. coli isolates on SPF chickens, improve their antioxidant capacity and immunity, and reduce inflammatory responses following E. coli infection.

18.
Poult Sci ; 103(10): 104079, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39098297

ABSTRACT

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. The use of probiotics is an effective approach to reduce aflatoxins content in foods. To find efficient bacterial species that can eliminate or detoxify AFB1, a bacterial strain S51 capable of degrading AFB1 was isolated from chicken intestine and soil samples by using a culture medium containing coumarin as the sole carbon source. Based on the results of 16S rRNA gene sequence analysis, this isolate (strain S51) was identified as Bacillus licheniformis strain QT338. Further characterization of strain S51 showed that it could degrade AFB1 by 61.3% after incubation at 30°C for 72 h. Additional studies demonstrated that S51 promoted good growth performance of the treated chickens, showed no hemolytic activity, carried few drug resistance genes, and exhibited a certain level of tolerance to acid and bile salts. Furthermore, to verify whether strain S51 exerts a protective effect on AFB1-induced liver injury in chickens and to elucidate the underlying mechanism, a chicken toxicity model was induced with AFB1 (100 µg/kg BW) and treated with S51(1×109CFU/mL) for 12 d. The results showed that S51 decreased the level of alanine transaminase, aspartate transaminase, and total bilirubin (P < 0.05); increased glutathione activity and total antioxidant capacityin the liver induced by AFB1, and decreased malondialdehyde production (P < 0.05). S51 also up-regulated the mRNA expression level of the antioxidant proteins HO-1 and Nrf2 and down-regulated the expression of the oxidation-related factor Keap1 in the Nrf2/Keap1 signaling pathway (P <0.05). S51 inhibited hepatocyte apoptosis induced by AFB1 and decreased the mRNA expression levels of the apoptosis-related genes Bax, caspase-3, caspase-9, and Cyt-C (P < 0.05). These results indicate that S51 regulates apoptosis and alleviates AFB1-induced oxidative stress in chicken liver by controlling the Nrf2/Keap1 signaling pathway.

19.
J Biomed Mater Res B Appl Biomater ; 112(9): e35473, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198004

ABSTRACT

Tissue engineering technology offers a promising solution for ear reconstruction; however, it faces the challenge of foreign body reaction and neocartilage malformation. This study investigates the impact of interleukin-4 (IL-4), an anti-inflammatory factor, on cartilage regeneration of hydrogel encapsulating autologous auricular chondrocytes in a rabbit subcutaneous environment. Initially, we assessed the influence of IL-4 on chondrocyte proliferation and determined the appropriate concentration using the CCK-8 test in vitro. Subsequently, we loaded IL-4 into gelatin methacryloyl (GelMA) hydrogel containing chondrocytes and measured its release profile through ELISA. The constructs were then implanted autologously into rabbits' subcutis, and after 3, 7, 14, and 28 days, cartilage matrix formation was evaluated by histological examinations, and gene expression levels were detected by qRT-PCR. Results demonstrated that IL-4 promotes chondrocyte proliferation in vitro, and maximum release from constructs occurred during the first week. In the rabbit subcutaneous implantation model, IL-4-loaded constructs (20 ng/mL) maintained a superior chondrocytic phenotype compared to controls with increased expression of anti-inflammatory factors. These findings highlight IL-4 as a potential strategy for promoting chondrogenesis in a subcutaneous environment and improving ear reconstruction.


Subject(s)
Chondrocytes , Chondrogenesis , Ear Cartilage , Gelatin , Hydrogels , Interleukin-4 , Tissue Engineering , Animals , Rabbits , Gelatin/chemistry , Gelatin/pharmacology , Chondrogenesis/drug effects , Interleukin-4/metabolism , Interleukin-4/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Chondrocytes/metabolism , Chondrocytes/cytology , Methacrylates/chemistry , Methacrylates/pharmacology , Cell Proliferation/drug effects
20.
J Am Heart Assoc ; 13(17): e032169, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39189479

ABSTRACT

BACKGROUND: Adverse left ventricular remodeling is a significant cardiovascular predictor for patients with coronary artery disease and preserved left ventricular ejection fraction (LVEF). However, the remodeling indexes reflecting left ventricular spherization by myocardial perfusion imaging are underexplored. METHODS AND RESULTS: 727 patients (mean age 59.8±13.5 years, 329 women) diagnosed or suspected coronary artery disease with preserved LVEF who underwent resting myocardial perfusion imaging were retrospectively enrolled. The myocardial perfusion imaging findings including the total perfusion deficit and sphericity indexes (shape index (SI) and eccentricity index (EI) obtained from gated (QGS) and non-gated (QPS) images) were collected. Major adverse cardiovascular events (MACE) were followed up for 45.1±22.0 months. All patients were divided into 4 subgroups based on total perfusion deficit at 10% and LVEF at 65%. Univariable comparative analyses were performed in 5 cohorts (all patients and 4 subgroups). Patients who experienced MACE displayed higher SI and/or lower EI (all P<0.05). Kaplan-Meier survival analyses suggested significant differences for SIQPS in all 5 cohorts, for EIQPS and EIQGS in 4 cohorts, and for end-systolic and end-diastolic SIQGS in 3 cohorts (all P<0.05). Multivariate Cox analysis showed that abnormal SI and EI remained statistically significant predictors for MACE after adjusting for total perfusion deficit, LVEF, and other confounding factors. CONCLUSIONS: For patients diagnosed or suspected of coronary artery disease with preserved or supra-normal LVEF, resting sphericity indexes by myocardial perfusion imaging displayed incremental long-term prognostic value. Among these indicators, SIQPS is particularly promising across different perfusion or preserved functional conditions.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Stroke Volume , Ventricular Function, Left , Humans , Female , Male , Middle Aged , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/diagnostic imaging , Stroke Volume/physiology , Myocardial Perfusion Imaging/methods , Retrospective Studies , Prognosis , Aged , Ventricular Function, Left/physiology , Ventricular Remodeling/physiology , Predictive Value of Tests , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL