Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Gut Microbes ; 16(1): 2359665, 2024.
Article in English | MEDLINE | ID: mdl-38831611

ABSTRACT

The facultative anaerobic Gram-positive bacterium Enterococcus faecium is a ubiquitous member of the human gut microbiota. However, it has gradually evolved into a pathogenic and multidrug resistant lineage that causes nosocomial infections. The establishment of high-level intestinal colonization by enterococci represents a critical step of infection. The majority of current research on Enterococcus has been conducted under aerobic conditions, while limited attention has been given to its physiological characteristics in anaerobic environments, which reflects its natural colonization niche in the gut. In this study, a high-density transposon mutant library containing 26,620 distinct insertion sites was constructed. Tn-seq analysis identified six genes that significantly contribute to growth under anaerobic conditions. Under anaerobic conditions, deletion of sufB (encoding Fe-S cluster assembly protein B) results in more extensive and significant impairments on carbohydrate metabolism compared to aerobic conditions. Consistently, the pathways involved in this utilization-restricted carbohydrates were mostly expressed at significantly lower levels in mutant compared to wild-type under anaerobic conditions. Moreover, deletion of sufB or pflA (encoding pyruvate formate lyase-activating protein A) led to failure of gastrointestinal colonization in mice. These findings contribute to our understanding of the mechanisms by which E. faecium maintains proliferation under anaerobic conditions and establishes colonization in the gut.


Subject(s)
Bacterial Proteins , Enterococcus faecium , Iron-Sulfur Proteins , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Enterococcus faecium/growth & development , Animals , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anaerobiosis , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Microbiome , Gram-Positive Bacterial Infections/microbiology , Humans , DNA Transposable Elements , Carbohydrate Metabolism , Female , Acetyltransferases
2.
Biofilm ; 7: 100201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38779407

ABSTRACT

Listeria monocytogenes is one of the leading causative agents of foodborne disease outbreaks worldwide. Herein, the antibiofilm effect and mechanism of Mannosylerythritol Lipid-A against L. monocytogenes EGD-e is reported for the first time. MEL-A effectively attenuated biofilm formation while reducing the viability and motility of bacteria within the biofilm in the early stage, and influenced bacterial adhesion by affecting the secretion of extracellular polysaccharides and eDNA. RT-qPCR revealed that MEL-A significantly suppressed the expression of genes involved in flagellar movement and virulence. Untargeted LC-MS metabolomics indicated that MEL-A affected the fluidity and permeability of cell membranes by significantly upregulating unsaturated fatty acids, lipids and glycoside metabolites, and affected protein biosynthesis, nucleotide metabolism and DNA synthesis and repair by significantly downregulating amino acid metabolism and nucleic acid metabolism. These pathways may constitute the key targets of biofilm formation inhibition by MEL-A. Furthermore, MEL-A showed good removal effects on mature biofilms under different temperatures, different materials and milk. Our data indicated that MEL-A could be used as a novel antibiofilm agent to improve food safety. Our study provides new insights into the possible inhibitory mechanism of MEL-A and the response of L. monocytogenes EGD-e to MEL-A.

3.
Eur J Cell Biol ; 103(2): 151426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805800

ABSTRACT

Cell-cell mechanotransduction regulates tissue development and homeostasis. α-catenin, the core component of adherens junctions, functions as a tension sensor and transducer by recruiting vinculin and transducing signals that influence cell behaviors. α-catenin/vinculin complex-mediated mechanotransduction regulates multiple pathways, such as Hippo pathway. However, their associations with the α-catenin-based tension sensors at cell junctions are still not fully addressed. Here, we uncovered the TRIP6/LATS1 complex co-localizes with α-catenin/vinculin at both bicellular junctions (BCJs) and tricellular junctions (TCJs). The localization of TRIP6/LATS1 complex to both TCJs and BCJs requires ROCK1 and α-catenin. Treatment by cytochalasin B, Y-27632 and blebbistatin all impaired the BCJ and TCJ junctional localization of TRIP6/LATS1, indicating that the junctional localization of TRIP6/LATS1 is mechanosensitive. The α-catenin/vinculin/TRIP6/LATS1 complex strongly localized to TCJs and exhibited a discontinuous button-like pattern on BCJs. Additionally, we developed and validated an α-catenin/vinculin BiFC-based mechanosensor that co-localizes with TRIP6/LATS1 at BCJs and TCJs. The mechanosensor exhibited a discontinuous distribution and motile signals at BCJs. Overall, our study revealed that TRIP6 and LATS1 are novel compositions of the tension sensor, together with the core complex of α-catenin/vinculin, at both the BCJs and TCJs.


Subject(s)
Protein Serine-Threonine Kinases , Vinculin , alpha Catenin , alpha Catenin/metabolism , Humans , Protein Serine-Threonine Kinases/metabolism , Vinculin/metabolism , Mechanotransduction, Cellular , Adaptor Proteins, Signal Transducing/metabolism , Intercellular Junctions/metabolism , HEK293 Cells , rho-Associated Kinases/metabolism , Transcription Factors/metabolism
5.
J Fungi (Basel) ; 9(3)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36983537

ABSTRACT

Fungal bioluminescence is widely distributed in the terrestrial environment. At a specific stage of growth, luminescent fungi shine green light at the fruiting body or mycelium. From the viewpoint of chemistry, fungal bioluminescence involves an in vivo cycle of caffeic acid. The complete cycle is composed of three stages: biosynthesis of luciferin from caffeic acid, luminescence process from luciferin to oxidized luciferin, and regeneration of caffeic acid from oxidized luciferin. Experimental studies roughly proposed this cycle but not the detailed reaction process and mechanism. Our previous theoretical study clearly described the mechanism of the middle stage. The present article attempts to describe the reaction processes and mechanisms of the other two stages by theoretical calculations. A complete theoretical study on the chemistry in the entire process of fungal bioluminescence is helpful to deeply understand fungal bioluminescence.

6.
Microbiol Spectr ; 11(1): e0275022, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36541787

ABSTRACT

Listeria monocytogenes is a foodborne pathogen that can tolerate a variety of extreme environments. In particular, its acid resistance (AR) capability is considered one of the key factors threating food safety. Here, we employed a microbial functional genomic technology termed transposon sequencing (Tn-seq), leading to the identification of two genes involved in cell wall peptidoglycan biosynthesis (murF) and phosphate transport (lmo2248) that play key roles in lactic acid resistance (LAR) of L. monocytogenes. Deletion of lmo2248 significantly impaired the ability of LAR in L. monocytogenes, demonstrating the accuracy of the Tn-seq results. Transcriptome analysis revealed that 31.7% of the L. monocytogenes genes on the genome were differentially expressed under lactic acid (LA) treatment, in which genes involved in phosphate transport were influenced most significantly. These findings shed light on the LAR mechanisms of L. monocytogenes, which may contribute to the development of novel strategies against foodborne pathogens. IMPORTANCE Listeria monocytogenes is a Gram-positive foodborne pathogen with high lethality and strong stress resistance, and its strong acid tolerance leads to many foodborne illnesses occurring in low-pH foods. Lactic acid is a generally recognized as safe (GRAS) food additive approved for use by the FDA. However, the genetic determinants of lactic acid resistance in L. monocytogenes have not been fully identified. In this study, the lactic acid resistance determinants of L. monocytogenes were comprehensively identified by Tn-seq on a genome-wide scale. Two genes, murF (cell wall peptidoglycan biosynthesis) and lmo2248 (phosphate transport), were identified to play an important role in the lactic acid resistance. Moreover, genome-wide transcriptomic analysis showed that phosphotransferase system (PTS)-related genes play a key role at the transcriptional level. These findings contribute to a better understanding of the lactic acid resistance mechanism of L. monocytogenes and may provide unique targets for the development of other novel antimicrobial agents.


Subject(s)
Listeria monocytogenes , Listeria monocytogenes/genetics , Transcriptome , Lactic Acid , Peptidoglycan , Food Microbiology , Gene Expression Profiling , Phosphates
7.
Plant Physiol Biochem ; 194: 742, 2023 01.
Article in English | MEDLINE | ID: mdl-36384930

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editors-in-Chief. A large part of the article is highly similar to the paper previously published by Wenqian Hou, Lei Ren, Yang Zhang, Haoyun Sun, Tianye Shi, Yulan Gu, Aimin Wang, Daifu Ma, Zongyun Li and Lei Zhang in Scientia Horticulturae 288 (2021) 110374 https://doi.org/10.1016/j.scienta.2021.110374. In particular, a large part of the two articles shows a study on the same gene family in the same plant, with similar methodological approaches, resulting in a series of highly similar figures. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

8.
Molecules ; 27(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36364220

ABSTRACT

Protein-surfactant interactions have a significant influence on food functionality, which has attracted increasing attention. Herein, the effect of glycolipid mannosylerythritol lipid-A (MEL-A) on the heat-induced soy glycinin (11S) aggregates was investigated by measuring the structure, binding properties, interfacial behaviors, and emulsification characteristics of the aggregates. The results showed that MEL-A led to a decrease in the surface tension, viscoelasticity, and foaming ability of the 11S aggregates. In addition, MEL-A with a concentration above critical micelle concentration (CMC) reduced the random aggregation of 11S protein after heat treatment, thus facilitating the formation of self-assembling core-shell particles composed of a core of 11S aggregates covered by MEL-A shells. Infrared spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry also confirmed that the interaction forces between MEL-A and 11S were driven by hydrophobic interactions between the exposed hydrophobic groups of the protein and the fatty acid chains or acetyl groups of MEL-A, as well as the hydrogen bonding between mannosyl-D-erythritol groups of MEL-A and amino acids of 11S. The findings of this study indicated that such molecular interactions are responsible for the change in surface behavior and the enhancement of foaming stability and emulsifying property of 11S aggregates upon heat treatment.


Subject(s)
Globulins , Hot Temperature , Globulins/chemistry , Glycolipids/chemistry , Lipid A
9.
Foods ; 11(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36076848

ABSTRACT

Mannosylerythritol lipids-A (MEL-A) is a novel biosurfactant with multiple biological effects. The synergistic antibacterial activity and mechanism of MEL-A and lactic acid (LA) against Listeria monocytogenes were investigated. The synergistic effect resulted in a significant increase in the antibacterial rate compared to LA treatment alone. Genome-wide transcriptomic analysis was applied to deeply investigate the synergistic antibacterial mechanism. Gene Ontology (GO) enrichment analysis showed that the synergy between MEL-A and LA affected many potential cellular responses, including the sugar phosphotransferase system, carbohydrate transport, and ribosomes. KEGG enrichment analysis showed that the PTS system and ribosome-related pathways were significantly enriched. In addition, synergistic treatment affected locomotion and membrane-related cellular responses in GO enrichment analysis and carbohydrate metabolism and amino acid metabolism pathways in KEGG enrichment analysis compared to LA treatment alone. The accuracy of the transcriptome analysis results was verified by qPCR (R2 = 0.9903). This study will provide new insights for the prevention and control of L. monocytogenes.

10.
Environ Pollut ; 313: 120124, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36089137

ABSTRACT

Serious environmental pollution of heavy metals has attracted people's attention in recent years and halophiles seem to be potential bioremediation in the controlling of heavy metals contamination. In this study, the adaptive mechanism of halophilic Brachybacterium muris (B. muris) in response to salt stress and its mitigation of copper (Cu) toxicity in hydroponic plants were investigated. The cell morphology was observed using transmission electron microscopy. The cell membrane composition and fluidity were examined by the combination of gas chromatography, gas chromatography-mass spectrometry, ultra-high performance liquid chromatography-mass spectrometry, and fluorescence spectrophotometry. Moreover, the metabolic pathways of B. muris in response to salt stress were analyzed using the prokaryotic transcriptomics approach. A hydroponic co-culture model was further conducted to explore the effects of B. muris on wheat seedlings subjected to Cu toxicity. It was found that B. muris can respond to high osmotic pressure by improving the cell membrane fluidity, altering the cell morphology and cell membrane compositions. The proportion of unsaturated fatty acids, phosphatidylethanolamine, and phosphatidylinositol in B. muris cell membranes increased significantly, while zymosterol, fecosterol, and ergosterol contents decreased under a high salinity situation. Further transcriptomic analysis showed that genes encoding L-glutamate synthase, glutamate ABC transporter ATP-binding protein, and sodium cotransporter were up-regulated, indicating that both the synthesis and transport of glutamate were significantly enhanced under high osmotic pressure. Additionally, B. muris alleviated the inhibitory effect of Cu2+ on wheat seedlings' growth, causing a 30.14% decrease in H2O2 content and a significant increase of 83.86% and 45.96% in POD activity and GSH content in wheat roots, respectively. The findings of this study suggested that the salt-tolerant B. muris may serve as a promising strategy for improving the bioremediation of metal-contaminated saline water and soils.


Subject(s)
Copper , Metals, Heavy , ATP-Binding Cassette Transporters/metabolism , Actinobacteria , Adenosine Triphosphate/metabolism , Copper/toxicity , Ergosterol/metabolism , Ergosterol/pharmacology , Gas Chromatography-Mass Spectrometry , Glutamate Synthase/metabolism , Glutamate Synthase/pharmacology , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Humans , Hydrogen Peroxide/metabolism , Hydroponics , Metals, Heavy/toxicity , Phosphatidylethanolamines/metabolism , Phosphatidylethanolamines/pharmacology , Phosphatidylinositols/metabolism , Phosphatidylinositols/pharmacology , Plant Roots/metabolism , Salt Stress , Seedlings , Sodium/metabolism , Soil , Triticum/metabolism
11.
Plant Physiol Biochem ; 188: 109-122, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36029691

ABSTRACT

B-box (BBX) proteins constitute a class of transcription factors that play vital roles in the regulation of photoperiod flowering, photomorphogenesis, and the response to biotic and abiotic stresses. In this paper, a total of 32 BBX genes were identified in Ipomoea trifida, a wild ancestor of sweetpotato. Chromosome localization analysis showed that these 32 ItfBBX genes were distributed unevenly across 12 chromosomes. The ItfBBX gene family members were classified into five groups according to their phylogenetic relationships and structural features. Predictions of cis-elements revealed that the promoter sequences of the ItfBBX genes contain light response, stress response, hormone response and other elements. Synteny analysis revealed evidence of 26 segmental duplication events and only one tandem duplication event. Tissue-specific and abiotic stress-response expression profiles were analysed, and the results were confirmed via RT-qPCR. Overall, ItfBBX genes may play vital roles in the stress response. We chose IbBBX28 for further study and revealed that IbBBX28 negatively regulates the flowering time of IbBBX28-overexpressing Arabidopsis under long-day conditions. Our study provides references for characterizing the function of BBX genes in sweetpotato.


Subject(s)
Arabidopsis , Ipomoea batatas , Ipomoea , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Genome, Plant/genetics , Ipomoea/genetics , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics
12.
Microbiol Spectr ; 10(4): e0071022, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35735974

ABSTRACT

Listeria monocytogenes (Lm) is a foodborne pathogen that can cause severe human illness. Standard control measures for restricting bacterial growth, such as refrigeration, are often inadequate as Lm grows well at low temperatures. To identify genes involved in growth at low temperatures, a powerful functional genomics method Tn-seq was performed in this study. This genome-wide screening comprehensively identified the known and novel genetic determinants involved in low-temperature growth. A novel gene lmo1366, encoding rRNA methyltransferase, was identified to play an essential role in Lm growth at 16°C. In contrast, the inactivation of lmo2301, a gene encoding the terminase of phage A118, significantly enhanced the growth of Lm at 16°C. The deletion of lmo1366 or lmo2301 resulted in cell morphology alterations and impaired the growth rate in milk and other conditions at low temperatures. Transcriptomic analysis revealed that the Δlmo1366 and Δlmo2301 mutants exhibited altered transcriptional patterns compared to the wild-type strain at 16°C with significant differences in genes involved in ribosome structural stability and function, and membrane biogenesis, respectively. This work uncovered novel genetic determinants involved in Lm growth at 16°C, which could lead to a better understanding of how bacteria survive and multiply at low temperatures. Furthermore, these findings could potentially contribute to developing novel antibacterial strategies under low-temperature conditions. IMPORTANCE Listeria monocytogenes is a Gram-positive pathogen that contributes to foodborne outbreaks due to its ability to survive at low temperatures. However, the genetic determinants of Lm involved in growth at low temperatures have not been fully defined. Here, the genetic determinants involved in the low-temperature growth of Lm were comprehensively identified on a genome-wide scale by Tn-seq. The gene lmo1366, encoding rRNA methyltransferase, was identified essential for growth under low-temperature conditions. On the other hand, the gene lmo2301, encoding terminase of phage A118, plays a negative role in bacterial growth at low temperatures. The transcriptomic analysis revealed the potential mechanisms. These findings lead to a better understanding of how bacteria survive and multiply at low temperatures and could provide unique targets for novel antibacterial strategies under low-temperature conditions.


Subject(s)
Cold Temperature , Genes, Bacterial , Listeria monocytogenes , Anti-Bacterial Agents , Bacterial Proteins/genetics , Genomics , Listeria monocytogenes/genetics , Listeria monocytogenes/growth & development , Methyltransferases/genetics
13.
J Fungi (Basel) ; 8(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35736128

ABSTRACT

Icariin is the most effective bioactive compound in Herba Epimedii. To enhance the content of icariin in the epimedium water extract, a novel strain, Papiliotrema laurentii ZJU-L07, producing an intracellular α-L-rhamnosidase was isolated from the soil and mutagenized. The specific activity of α-L-rhamnosidase was 29.89 U·mg-1 through purification, and the molecular mass of the enzyme was 100 kDa, as assayed by SDS-PAGE. The characterization of the purified enzyme was determined. The optimal temperature and pH were 55 °C and 7.0, respectively. The enzyme was stable in the pH range 5.5-9.0 for 2 h over 80% and the temperature range 30-40 °C for 2 h more than 70%. The enzyme activity was inhibited by Ca2+, Fe2+, Cu2+, and Mg2+, especially Fe2+. The kinetic parameters of Km and Vmax were 1.38 mM and 24.64 µmol·mg-1·min-1 using pNPR as the substrate, respectively. When epimedin C was used as a nature substrate to determine the kinetic parameters of α-L-rhamnosidase, the values of Km and Vmax were 3.28 mM and 0.01 µmol·mg-1·min-1, respectively. The conditions of enzymatic hydrolysis were optimized through single factor experiments and response surface methodology. The icariin yield increased from 61% to over 83% after optimization. The enzymatic hydrolysis method could be used for the industrialized production of icariin. At the same time, this enzyme could also cleave the α-1,2 glycosidic linkage between glucoside and rhamnoside in naringin and neohesperidin, which could be applicable in other biotechnological processes.

14.
Molecules ; 27(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408657

ABSTRACT

Enterococci, a type of lactic acid bacteria, are widely distributed in various environments and are part of the normal flora in the intestinal tract of humans and animals. Although enterococci have gradually evolved pathogenic strains causing nosocomial infections in recent years, the non-pathogenic strains have still been widely used as probiotics and feed additives. Enterococcus can produce enterocin, which are bacteriocins considered as ribosomal peptides that kill or inhibit the growth of other microorganisms. This paper reviews the classification, synthesis, antibacterial mechanisms and applications of enterocins, and discusses the prospects for future research.


Subject(s)
Bacteriocins , Enterococcus faecium , Animals , Anti-Bacterial Agents/pharmacology , Bacteriocins/chemistry , Bacteriocins/pharmacology , Bridged-Ring Compounds/chemistry , Enterococcus
15.
Microbiol Spectr ; 10(1): e0209521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196823

ABSTRACT

Listeria monocytogenes is a major pathogen contributing to foodborne outbreaks with high mortality. Nisin, a natural antimicrobial, has been widely used as a food preservative. However, the mechanisms of L. monocytogenes involved in nisin resistance have not yet to be fully defined. A mariner transposon library was constructed in L. monocytogenes, leading to the identification of 99 genes associated with the innate resistance to nisin via Transposon sequencing (Tn-seq) analysis. To validate the accuracy of the Tn-seq results, we constructed five mutants (ΔyqgS, ΔlafA, ΔvirR, ΔgtcA, and Δlmo1464) in L. monocytogenes. The results revealed that yqgS and lafA, the lipoteichoic acid-related genes, were essential for resistance to nisin, while the gtcA and lmo1464 mutants showed substantially enhanced nisin resistance. Densely wrinkled, collapsed surface and membrane breakdown were shown on ΔyqgS and ΔlafA mutants under nisin treatment. Deletion of yqgS and lafA altered the surface charge, and decreased the resistance to general stress conditions and cell envelope-acting antimicrobials. Furthermore, YqgS and LafA are required for biofilm formation and cell invasion of L. monocytogenes. Collectively, these results reveal novel mechanisms of nisin resistance in L. monocytogenes and may provide unique targets for the development of food-grade inhibitors for nisin-resistant foodborne pathogens. IMPORTANCE Listeria monocytogenes is an opportunistic Gram-positive pathogen responsible for listeriosis, and is widely present in a variety of foods including ready-to-eat foods, meat, and dairy products. Nisin is the only licensed lantibiotic by the FDA for use as a food-grade inhibitor in over 50 countries. A prior study suggests that L. monocytogenes are more resistant than other Gram-positive pathogens in nisin-mediated bactericidal effects. However, the mechanisms of L. monocytogenes involved in nisin resistance have not yet to be fully defined. Here, we used a mariner transposon library to identify nisin-resistance-related genes on a genome-wide scale via transposon sequencing. We found, for the first time, that YqgS and LafA (Lipoteichoic acid-related proteins) are required for resistance to nisin. Subsequently, we investigated the roles of YqgS and LafA in L. monocytogenes stress resistance, antimicrobial resistance, biofilm formation, and virulence in mammalian cells.


Subject(s)
Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Listeria monocytogenes/drug effects , Listeria monocytogenes/metabolism , Nisin/pharmacology , Teichoic Acids/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Biofilms , Foodborne Diseases , Gene Expression Regulation, Bacterial/drug effects , Listeria monocytogenes/genetics , Listeriosis , Virulence/drug effects
16.
Food Chem ; 369: 131011, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34507086

ABSTRACT

Biosurfactants have been put into applications in breadmaking industry, while the effects of mannosylerythritol lipid-A (MEL-A) on gluten network of frozen dough, bread quality and microbial spoilage were firstly investigated in this study. Rheology and differential scanning calorimetry (DSC) analysis showed that MEL-A significantly improved the rheological properties of frozen dough and reduced the content of frozen water. Further experiments showed that MEL-A promoted the formation of aggregates by interacting with gluten protein, and strengthened the gluten network through molecular weight distribution measurement and microstructure observation, effectively avoiding the destruction of ice crystals. A series of bread assessments illustrated MEL-A improved the loaf volume, gas retention ability and textural property. In addition, MEL-A (1.5%) killed 99.97% of the vegetative cells of Bacillus cereus and 75.54% of the spores, and at the same time had a slight inactivation effect on yeast. These results indicate that MEL-A has broad application prospects in the baking industry and the storage stage of flour products.


Subject(s)
Bread , Lipid A , Flour , Glutens , Glycolipids , Rheology , Spores , Water
17.
G3 (Bethesda) ; 11(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-33871589

ABSTRACT

Zinc is one of the most important trace elements as it plays a vital role in many biological processes. As well, aberrant zinc metabolism has been implicated in lipid-related metabolic diseases. Previously, we showed that zinc antagonizes iron to regulate sterol regulatory element-binding proteins and the stearoyl-CoA desaturase (SREBP-SCD) pathway in lipid metabolism in the model organism Caenorhabditis elegans. In this study, we present the identification of another cation diffusion facilitator, CDF-1, which regulates lipid metabolism along with SUR-7 in response to zinc. Inactivation of SBP-1, the only homolog of SREBPs, leads to an increased zinc level but decreased lipid accumulation. However, either the cdf-1(n2527) or sur-7(tm6523) mutation could successfully restore the altered fatty acid profile, fat content, and zinc level of the sbp-1(ep79) mutant. Furthermore, we found that CDF-1/SUR-7 may functionally bypass SBP-1 to directly affect the conversion activity of SCD in the biosynthesis of unsaturated fatty acids and lipid accumulation. Collectively, these results consistently support the link between zinc homeostasis and lipid metabolism via the SREBP-SCD axis by the cation diffusion facilitators CDF-1 and SUR-7.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lipid Metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Zinc/metabolism , Fatty Acids/metabolism , Cations/metabolism
18.
Pharmaceutics ; 13(2)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562052

ABSTRACT

Glycolipid biosurfactants are natural amphiphiles and have gained particular interest recently in their biodegradability, diversity, and bioactivity. Microbial infection has caused severe morbidity and mortality and threatened public health security worldwide. Glycolipids have played an important role in combating many diseases as therapeutic agents depending on the self-assembly property, the anticancer and anti-inflammatory properties, and the antimicrobial properties, including antibacterial, antifungal, and antiviral effects. Besides, their role has been highlighted as scavengers in impeding the biofilm formation and rupturing mature biofilm, indicating their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction in vast hospital infections. Notably, glycolipids have been widely applied to the synthesis of novel antimicrobial materials due to their excellent amphipathicity, such as nanoparticles and liposomes. Accordingly, this review will provide various antimicrobial applications of glycolipids as functional ingredients in medical therapy.

19.
Molecules ; 25(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096808

ABSTRACT

Mannosylerythritol lipids-A (MEL-A) is a novel biosurfactant with excellent surface activity and potential biomedical applications. In this study, we explored the antibacterial activity and the underlying mechanisms of MEL-A against the important food-borne pathogen Listeria monocytogenes. The bacterial growth and survival assays revealed a remarkable antibacterial activity of MEL-A. Since MEL-A is a biosurfactant, we examined the cell membrane integrity and morphological changes of MEL-A-treated bacteria by biochemical assays and flow cytometry analysis and electron microscopes. The results showed obvious damaging effects of MEL-A on the cell membrane and morphology. To further explore the antibacterial mechanism of MEL-A, a transcriptome analysis was performed, which identified 528 differentially expressed genes (DEGs). Gene ontology (GO) analysis revealed that the gene categories of membrane, localization and transport were enriched among the DEGs, and the analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways demonstrated significant changes in the maltodextrin ABC transporter system and stress response system. Furthermore, the growth of L. monocytogenes could also be significantly inhibited by MEL-A in milk, a model of a real food system, suggesting that MEL-A could be potentially applied as an natural antimicrobial agent to control food-borne pathogens in the food industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Glycolipids/pharmacology , Listeria monocytogenes/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Glycolipids/chemistry , Glycolipids/isolation & purification , Listeria monocytogenes/growth & development , Microbial Sensitivity Tests
20.
Plant Physiol Biochem ; 156: 323-332, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32998099

ABSTRACT

Purple-fleshed sweetpotato (PFSP) accumulates high amounts of anthocyanins that are beneficial to human health. Although biosynthesis of such secondary metabolites has been well studied in aboveground organs of many plants, the mechanisms underlying anthocyanin accumulation in underground tuberous roots of sweetpotato are less understood. To identify genes and metabolites involved in anthocyanin accumulation in sweetpotato, we performed comparative transcriptomic and metabolomic analysis of (PFSP) and white-fleshed sweetpotato (WFSP). Anthocyanin-targeted metabolome analysis revealed that delphinidin, petunidin, and rosinidin were the key metabolites conferring purple pigmentation in PFSP as they were highly enriched in PFSP but absent in WFSP. Transcriptomic analysis identified 358 genes that were potentially implicated in multiple pathways for the biosynthesis of anthocyanins. Although most of the genes were previously known for their roles in anthocyanin biosynthesis, we identified 26 differentially expressed genes that are involved in Aux/IAA-ARF signaling. Gene-metabolite correlation analysis also revealed novel genes that are potentially involved in the anthocyanin accumulation in sweetpotato. Taken together, this study provides insights into the genes and metabolites underlying anthocyanin enrichment in underground tuberous roots of sweetpotato.


Subject(s)
Anthocyanins/biosynthesis , Ipomoea batatas , Metabolome , Plant Roots/metabolism , Transcriptome , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Pigmentation
SELECTION OF CITATIONS
SEARCH DETAIL