Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 141
1.
Front Cell Infect Microbiol ; 14: 1373052, 2024.
Article En | MEDLINE | ID: mdl-38808067

Among the Acinetobacter genus, Acinetobacter pittii stands out as an important opportunistic infection causative agent commonly found in hospital settings, which poses a serious threat to human health. Recently, the high prevalence of carbapenem-resistant A. pittii isolates has created significant therapeutic challenges for clinicians. Bacteriophages and their derived enzymes are promising therapeutic alternatives or adjuncts to antibiotics effective against multidrug-resistant bacterial infections. However, studies investigating the depolymerases specific to A. pittii strains are scarce. In this study, we identified and characterized a capsule depolymerase, Dpo27, encoded by the bacteriophage IME-Ap7, which targets A. pittii. A total of 23 clinical isolates of Acinetobacter spp. were identified as A. pittii (21.91%, 23/105), and seven A. pittii strains with various K locus (KL) types (KL14, KL32, KL38, KL111, KL163, KL207, and KL220) were used as host bacteria for phage screening. The lytic phage IME-Ap7 was isolated using A. pittii 7 (KL220) as an indicator bacterium and was observed for depolymerase activity. A putative tail fiber gene encoding a polysaccharide-degrading enzyme (Dpo27) was identified and expressed. The results of the modified single-spot assay showed that both A. pittii 7 and 1492 were sensitive to Dpo27, which was assigned the KL220 type. After incubation with Dpo27, A. pittii strain was susceptible to killing by human serum; moreover, the protein displayed no hemolytic activity against erythrocytes. Furthermore, the protein exhibited sustained activity across a wide pH range (5.0-10.0) and at temperatures between 20 and 50°C. In summary, the identified capsule depolymerase Dpo27 holds promise as an alternative treatment for combating KL220-type A. pittii infections.


Acinetobacter Infections , Acinetobacter , Bacteriophages , Glycoside Hydrolases , Bacteriophages/genetics , Bacteriophages/enzymology , Bacteriophages/isolation & purification , Humans , Acinetobacter/enzymology , Acinetobacter/genetics , Acinetobacter/virology , Acinetobacter/drug effects , Acinetobacter Infections/microbiology , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Bacterial Capsules/metabolism , Bacterial Capsules/genetics
2.
Nat Plants ; 10(5): 798-814, 2024 May.
Article En | MEDLINE | ID: mdl-38714768

Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.


Arabidopsis Proteins , Arabidopsis , Phytochrome A , Phosphorylation , Phytochrome A/metabolism , Phytochrome A/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Phase Separation
3.
J Agric Food Chem ; 72(13): 7100-7120, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38488514

Depression is a neuropsychiatric disease that significantly impacts the physical and mental health of >300 million people worldwide and places a major burden on society. Ginsenosides are the main active ingredient in ginseng and have been proven to have various pharmacological effects on the nervous system. Herein, we investigated the antidepressant effect of ginsenoside Rk3 and its underlying mechanism in a murine model of depression. Rk3 significantly improved depression-like behavior in mice, ameliorated the disturbance of the hypothalamus-pituitary-adrenal axis, and alleviated neuronal damage in the hippocampus and prefrontal cortex of mice. Additionally, Rk3 improved the abnormal metabolism of tryptophan in brain tissue by targeting tryptophan hydroxylase, thereby reducing neuronal apoptosis and synaptic structural damage in the mouse hippocampus and prefrontal cortex. Furthermore, Rk3 reshaped the composition of the gut microbiota of mice and regulated intestinal tryptophan metabolism, which alleviated intestinal barrier damage. Thus, this study provides valuable insights into the role of Rk3 in the tryptophan metabolic cycle along the brain-gut axis, suggesting that Rk3 may have the potential for treating depression.


Ginsenosides , Tryptophan , Animals , Mice , Humans , Ginsenosides/pharmacology , Tryptophan Hydroxylase/genetics , Brain-Gut Axis , Depression/drug therapy , Depression/genetics
4.
J Matern Fetal Neonatal Med ; 37(1): 2327573, 2024 Dec.
Article En | MEDLINE | ID: mdl-38485520

OBJECTIVE: This study aims to compare the safety and efficacy of misoprostol administered orally and vaginally in obese pregnant women at term with either gestational hypertension or diabetes. METHODS: A total of 264 pregnant women were enrolled and categorized into two groups based on their primary condition: hypertension (134 cases) or diabetes mellitus (130 cases) and were further divided into subgroups for misoprostol administration: orally (Oral group) or vaginally (Vaginal group). The primary outcomes measured were changes in the Bishop score following treatment, induction of labor (IOL) success rates, requirement for oxytocin augmentation, duration of labor, mode of delivery, and cesarean section rates. RESULTS: Significant enhancements in Bishop scores, decreased cesarean section rates and increased success rates of IOL were noted in both administration groups. The incidence of vaginal delivery within 24 h was significantly higher in the Vaginal group compared to the Oral group. Adverse effects, including nausea, uterine overcontraction, hyperfrequency of uterine contraction and uterine hyperstimulation without fetal heart rate deceleration, were significantly more prevalent in the Vaginal group than in the Oral group. CONCLUSION: Misoprostol administration, both orally and vaginally, proves effective for labor induction in obese pregnant women with hypertension or diabetes. However, the oral route presents a lower risk of adverse maternal and neonatal outcomes, suggesting its preference for safer labor induction in this demographic.


Diabetes Mellitus , Hypertension, Pregnancy-Induced , Misoprostol , Oxytocics , Infant, Newborn , Pregnancy , Female , Humans , Misoprostol/adverse effects , Oxytocics/adverse effects , Pregnant Women , Administration, Intravaginal , Cesarean Section , Labor, Induced , Administration, Oral , Hypertension, Pregnancy-Induced/drug therapy
5.
J Pharm Anal ; 14(2): 259-275, 2024 Feb.
Article En | MEDLINE | ID: mdl-38464791

The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer (CRC). However, the effect of ginsenoside Rk3 (Rk3) on CRC and gut microbiota remains unclear. Therefore, the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation. Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors, repairs intestinal barrier damage, and regulates the gut microbiota imbalance caused by CRC, including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis, and clearance of pathogenic Desulfovibrio. Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids, particularly by upregulating glutamine, which has the potential to regulate the immune response. Furthermore, we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) signaling pathways, which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway. These results indicate that Rk3 modulates gut microbiota, regulates ILC3s immune response, and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors. More importantly, the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota. In summary, these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.

6.
Angew Chem Int Ed Engl ; 63(24): e202316299, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38422222

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g-1) and cycling life (>1000 cycles, 95 % capacity retention).

7.
ACS Appl Mater Interfaces ; 16(10): 12974-12985, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38416692

Foot activity can reflect numerous physiological abnormalities in the human body, making gait a valuable metric in health monitoring. Research on flexible sensors for gait monitoring has focused on high sensitivity, wide working range, fast response, and low detection limit, but challenges remain in areas such as elasticity, antibacterial activity, user-friendliness, and long-term stability. In this study, we have developed a novel capacitive pressure sensor that offers an ultralow detection limit of 1 Pa, wide detection ranges from 1 Pa to 2 MPa, a high sensitivity of 0.091 kPa-1, a fast response time of 71 ms, and exceptional stability over 6000 cycles. This sensor not only has the ability of accurately discriminating mechanical stimuli but also meets the requirements of elasticity, antibacterial activity, wearable comfort, and long-term stability for gait monitoring. The fabrication method of a dual dielectric layer and integrated composite electrode is simple, cost-effective, stable, and amenable to mass production. Thereinto, the introduction of a dual dielectric layer, based on an optimized electrospinning network and micropillar array, has significantly improved the sensitivity, detection range, elasticity, and antibacterial performance of the sensor. The integrated flexible electrodes are made by template method using composite materials of carbon nanotubes (CNTs), two-dimensional titanium carbide Ti3C2Tx (MXene), and polydimethylsiloxane (PDMS), offering synergistic advantages in terms of conductivity, stability, sensitivity, and practicality. Additionally, we designed a smart insole that integrates the as-prepared sensors with a miniature instrument as a wearable platform for gait monitoring and disease warning. The developed sensor and wearable platform offer a cutting-edge solution for monitoring human activity and detecting diseases in a noninvasive manner, paving the way for future wearable devices and personalized healthcare technologies.


Nanotubes, Carbon , Humans , Anti-Bacterial Agents , Elasticity , Electric Conductivity , Electrodes
8.
Mater Horiz ; 11(7): 1611-1637, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38294286

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have garnered attention in photocatalysis due to their unique features including extensive surface area, adjustable pores, and the ability to incorporate various functional groups. However, challenges such as limited visible light absorption and rapid electron-hole recombination often hinder their photocatalytic efficiency. Recent developments have introduced plasmonic nanoparticles (NPs) and junctions to enhance the photocatalytic performance of MOFs/COFs. This paper provides a comprehensive review of recent advancements in MOF/COF-based photocatalysts improved by integration of plasmonic NPs and junctions. We begin by examining the utilization of plasmonic NPs, known for absorbing longer-wavelength light compared to typical MOFs/COFs. These NPs exhibit localized surface plasmon resonance (LSPR) when excited, effectively enhancing the photocatalytic performance of MOFs/COFs. Moreover, we discuss the role of homo/hetero-junctions in facilitating charge separation, further boosting the photocatalytic performance of MOFs/COFs. The mechanisms behind the improved photocatalytic performance of these composites are discussed, along with an assessment of challenges and opportunities in the field, guiding future research directions.

9.
Acta Pharm Sin B ; 14(1): 155-169, 2024 Jan.
Article En | MEDLINE | ID: mdl-38239242
10.
J Am Chem Soc ; 146(4): 2574-2582, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38231138

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have attracted increasing interest in electronics due to their (semi)conducting properties. Charge-neutral 2D c-MOFs also possess persistent organic radicals that can be viewed as spin-concentrated arrays, affording new opportunities for spintronics. However, the strong π-interaction between neighboring layers of layer-stacked 2D c-MOFs annihilates active spin centers and significantly accelerates spin relaxation, severely limiting their potential as spin qubits. Herein, we report the precise tuning of the charge transport and spin dynamics in 2D c-MOFs via the control of interlayer stacking. The introduction of bulky side groups on the conjugated ligands enables a significant dislocation of the 2D c-MOFs layers from serrated stacking to staggered stacking, thereby spatially weakening the interlayer interactions. As a consequence, the electrical conductivity of 2D c-MOFs decreases by 6 orders of magnitude, while the spin density achieves more than a 30-fold increase and the spin-lattice relaxation time (T1) is increased up to ∼60 µs, hence being superior to the reference 2D c-MOFs with compact stackings whose spin relaxation is too fast to be detected. Spin dynamics results also reveal that spinless polaron pairs or bipolarons play critical roles in the charge transport of these 2D c-MOFs. Our strategy provides a bottom-up approach for enlarging spin dynamics in 2D c-MOFs, opening up pathways for developing MOF-based spintronics.

11.
Plant Cell ; 36(4): 1098-1118, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38092516

DNA methylation is an important epigenetic mark implicated in selective rRNA gene expression, but the DNA methylation readers and effectors remain largely unknown. Here, we report a protein complex that reads DNA methylation to regulate variant-specific 45S ribosomal RNA (rRNA) gene expression in Arabidopsis (Arabidopsis thaliana). The complex, consisting of METHYL-CpG-BINDING DOMAIN PROTEIN5 (MBD5), MBD6, ALPHA-CRYSTALLIN DOMAIN PROTEIN15.5 (ACD15.5), and ACD21.4, directly binds to 45S rDNA. While MBD5 and MBD6 function redundantly, ACD15.5 and ACD21.4 are indispensable for variant-specific rRNA gene expression. These 4 proteins undergo phase separation in vitro and in vivo and are interdependent for their phase separation. The α-crystallin domain of ACD15.5 and ACD21.4, which is essential for their function, enables phase separation of the complex, likely by mediating multivalent protein interactions. The effector MICRORCHIDIA6 directly interacts with ACD15.5 and ACD21.4, but not with MBD5 and MBD6, and is recruited to 45S rDNA by the MBD-ACD complex to regulate variant-specific 45S rRNA expression. Our study reveals a pathway in Arabidopsis through which certain 45S rRNA gene variants are silenced, while others are activated.


Arabidopsis Proteins , Arabidopsis , alpha-Crystallins , Arabidopsis/genetics , Arabidopsis/metabolism , Genes, rRNA , DNA Methylation/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , alpha-Crystallins/genetics , alpha-Crystallins/metabolism
12.
New Phytol ; 241(5): 2108-2123, 2024 Mar.
Article En | MEDLINE | ID: mdl-38155438

Plants evolved sophisticated machineries to monitor levels of external nitrogen supply, respond to nitrogen demand from different tissues and integrate this information for coordinating its assimilation. Although roles of inorganic nitrogen in orchestrating developments have been studied in model plants and crops, systematic understanding of the origin and evolution of its assimilation and signaling machineries remains largely unknown. We expanded taxon samplings of algae and early-diverging land plants, covering all main lineages of Archaeplastida, and reconstructed the evolutionary history of core components involved in inorganic nitrogen assimilation and signaling. Most components associated with inorganic nitrogen assimilation were derived from the ancestral Archaeplastida. Improvements of assimilation machineries by gene duplications and horizontal gene transfers were evident during plant terrestrialization. Clusterization of genes encoding nitrate assimilation proteins might be an adaptive strategy for algae to cope with changeable nitrate availability in different habitats. Green plants evolved complex nitrate signaling machinery that was stepwise improved by domains shuffling and regulation co-option. Our study highlights innovations in inorganic nitrogen assimilation and signaling machineries, ranging from molecular modifications of proteins to genomic rearrangements, which shaped developmental and metabolic adaptations of plants to changeable nutrient availability in environments.


Nitrates , Nitrogen , Nitrates/metabolism , Nitrogen/metabolism , Signal Transduction , Crops, Agricultural/metabolism
13.
Biomater Sci ; 12(1): 151-163, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-37937608

Chronic skin wounds are often associated with multidrug-resistant bacteria, impeding the healing process. Bacteriophage (phage) therapy has been revitalized as a promising strategy to counter the growing concerns of antibiotic resistance. However, phage monotherapy also faces several application drawbacks, such as a narrow host spectrum, the advent of resistant phenotypes and poor stability of phage preparations. Phage-antibiotic synergistic (PAS) combination therapy has recently been suggested as a possible approach to overcome these shortcomings. In the present study, we employed a model PAS combination containing a vB_AbaM-IME-AB2 phage and colistin to develop stable wound dressings of PAS to mitigate infections associated with Acinetobacter baumannii. A set of thermosensitive hydrogels were synthesized with varying amounts of Pluronic® F-127 (PF-127 at 15, 17.5 and 20 w/w%) modified with/without 3 w/w% hydroxypropyl methylcellulose (HPMC). Most hydrogel formulations had a gelation temperature around skin temperature, suitable for topical application. The solidified gels were capable of releasing the encapsulated phage and colistin in a sustained manner to kill bacteria. The highest bactericidal effect was achieved with the formulation containing 17.5% PF-127 and 3% HPMC (F5), which effectively killed bacteria in both planktonic (by 5.66 log) and biofilm (by 3 log) states and inhibited bacterial regrowth. Good storage stability of F5 was also noted with negligible activity loss after 9 months of storage at 4 °C. The ex vivo antibacterial efficacy of the F5 hydrogel formulation was also investigated in a pork skin wound infection model, where it significantly reduced the bacterial burden by 4.65 log. These positive outcomes warrant its further development as a topical PAS-wound dressing.


Acinetobacter baumannii , Bacteriophages , Wound Infection , Humans , Colistin/pharmacology , Bacteriophages/genetics , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Wound Infection/drug therapy , Wound Infection/microbiology
14.
J Integr Plant Biol ; 65(12): 2631-2644, 2023 Dec.
Article En | MEDLINE | ID: mdl-37552560

The BAP module, comprising BRASSINAZOLE RESISTANT 1 (BZR1), AUXIN RESPONSE FACTOR 6 (ARF6), and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), functions as a molecular hub to orchestrate plant growth and development. In Arabidopsis thaliana, components of the BAP module physically interact to form a complex system that integrates light, brassinosteroid (BR), and auxin signals. Little is known about the origin and evolution of the BAP module. Here, we conducted comparative genomic and transcriptomic analyses to investigate the evolution and functional diversification of the BAP module. Our results suggest that the BAP module originated in land plants and that the ζ, ε, and γ whole-genome duplication/triplication events contributed to the expansion of BAP module components in seed plants. Comparative transcriptomic analysis suggested that the prototype BAP module arose in Marchantia polymorpha, experienced stepwise evolution, and became established as a mature regulatory system in seed plants. We developed a formula to calculate the signal transduction productivity of the BAP module and demonstrate that more crosstalk among components enables higher signal transduction efficiency. Our results reveal the evolutionary history of the BAP module and provide insights into the evolution of plant signaling networks and the strategies employed by plants to integrate environmental and endogenous signals.


Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Indoleacetic Acids , Arabidopsis/metabolism , Plants/metabolism , Brassinosteroids , Gene Expression Regulation, Plant/genetics , DNA-Binding Proteins/genetics
15.
Int J Antimicrob Agents ; 62(5): 106951, 2023 Nov.
Article En | MEDLINE | ID: mdl-37574030

Bacteriophage (phage) therapy, exploiting phages which are the natural enemies of bacteria, has been re-introduced to treat multidrug-resistant (MDR) bacterial infections. However, some intrinsic drawbacks of phages are overshadowing their clinical use, particularly the narrow host spectrum and rapid emergence of resistance upon treatment. The use of phage-antibiotic combinations exhibiting synergistic bacterial killing [termed 'phage-antibiotic synergy' (PAS)] has therefore been proposed. It is well reported that the types and doses of phages and antibiotics are critical in achieving PAS. However, the impact of treatment order has received less research attention. As such, this study used an Acinetobacter baumannii phage vB_AbaM-IME-AB2 and colistin as a model PAS combination to elucidate the order effects in-vitro. While application of the phage 8 h before colistin treatment demonstrated the greatest antibacterial synergy, it failed to prevent the development of phage resistance. On the other hand, simultaneous application and antibiotic followed by phage application were able to suppress/delay the development of resistance effectively, and simultaneous application demonstrated superior antibacterial and antibiofilm activities. Further in-vivo investigation is required to confirm the impact of treatment order on PAS.


Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Humans , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Drug Resistance, Multiple, Bacterial
16.
Plants (Basel) ; 12(14)2023 Jul 15.
Article En | MEDLINE | ID: mdl-37514268

DNA methylation plays important roles through the methyl-CpG-binding domain (MBD) to realize epigenetic modifications. Thirteen AtMBD proteins have been identified from the Arabidopsis thaliana genome, but the functions of some members are unclear. AtMBD3 was found to be highly expressed in pollen and seeds and it preferably binds methylated CG, CHG, and unmethylated DNA sequences. Then, two mutant alleles at the AtMBD3 locus were obtained in order to further explore its function using CRISPR/Cas9. When compared with 92.17% mature pollen production in the wild type, significantly lower percentages of 84.31% and 78.91% were observed in the mbd3-1 and mbd3-2 mutants, respectively. About 16-21% of pollen from the mbd3 mutants suffered a collapse in reproductive transmission, whereas the other pollen was found to be normal. After pollination, about 16% and 24% of mbd3-1 and mbd3-2 mutant seeds underwent early or late abortion, respectively. Among all the late abortion seeds in mbd3-2 plants, 25% of the abnormal seeds were at the globular stage, 31.25% were at the transition stage, and 43.75% were at the heart stage. A transcriptome analysis of the seeds found 950 upregulated genes and 1128 downregulated genes between wild type and mbd3-2 mutants. Some transcriptional factors involved in embryo development were selected to be expressed, and we found significant differences between wild type and mbd3 mutants, such as WOXs, CUC1, AIB4, and RGL3. Furthermore, we found a gene that is specifically expressed in pollen, named PBL6. PBL6 was found to directly interact with AtMBD3. Our results provide insights into the function of AtMBD3 in plants, especially in sperm fertility.

17.
Nat Mater ; 22(7): 880-887, 2023 Jul.
Article En | MEDLINE | ID: mdl-37337069

Two-dimensional conjugated polymers (2DCPs), composed of multiple strands of linear conjugated polymers with extended in-plane π-conjugation, are emerging crystalline semiconducting polymers for organic (opto)electronics. They are represented by two-dimensional π-conjugated covalent organic frameworks, which typically suffer from poor π-conjugation and thus low charge carrier mobilities. Here we overcome this limitation by demonstrating two semiconducting phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type 2DCPs (2DCP-MPc, with M = Cu or Ni), which are constructed from octaaminophthalocyaninato metal(II) and naphthalenetetracarboxylic dianhydride by polycondensation under solvothermal conditions. The 2DCP-MPcs exhibit optical bandgaps of ~1.3 eV with highly delocalized π-electrons. Density functional theory calculations unveil strongly dispersive energy bands with small electron-hole reduced effective masses of ~0.15m0 for the layer-stacked 2DCP-MPcs. Terahertz spectroscopy reveals the band transport of Drude-type free carriers in 2DCP-MPcs with exceptionally high sum mobility of electrons and holes of ~970 cm2 V-1 s-1 at room temperature, surpassing that of the reported linear conjugated polymers and 2DCPs. This work highlights the critical role of effective conjugation in enhancing the charge transport properties of 2DCPs and the great potential of high-mobility 2DCPs for future (opto)electronics.


Metal-Organic Frameworks , Polymers , Electronics , Electrons , Indoles
18.
J Pharm Anal ; 13(5): 463-482, 2023 May.
Article En | MEDLINE | ID: mdl-37305788

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Ginsenoside Rk3, an important and rare saponin in heat-treated ginseng, is generated from Rg1 and has a smaller molecular weight. However, the anti-HCC efficacy and mechanisms of ginsenoside Rk3 have not yet been characterized. Here, we investigated the mechanism by which ginsenoside Rk3, a tetracyclic triterpenoid rare ginsenoside, inhibits the growth of HCC. We first explored the possible potential targets of Rk3 through network pharmacology. Both in vitro (HepG2 and HCC-LM3 cells) and in vivo (primary liver cancer mice and HCC-LM3 subcutaneous tumor-bearing mice) studies revealed that Rk3 significantly inhibits the proliferation of HCC. Meanwhile, Rk3 blocked the cell cycle in HCC at the G1 phase and induced autophagy and apoptosis in HCC. Further proteomics and siRNA experiments showed that Rk3 regulates the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway to inhibit HCC growth, which was validated by molecular docking and surface plasmon resonance. In conclusion, we report the discovery that ginsenoside Rk3 binds to PI3K/AKT and promotes autophagy and apoptosis in HCC. Our data strongly support the translation of ginsenoside Rk3 into novel PI3K/AKT-targeting therapeutics for HCC treatment with low toxic side effects.

19.
Angew Chem Int Ed Engl ; 62(30): e202306091, 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37204021

Emerging rechargeable aluminium batteries (RABs) offer a sustainable option for next-generation energy storage technologies with low cost and exemplary safety. However, the development of RABs is restricted by the limited availability of high-performance cathode materials. Herein, we report two polyimide two-dimensional covalent organic frameworks (2D-COFs) cathodes with redox-bipolar capability in RAB. The optimal 2D-COF electrode achieves a high specific capacity of 132 mAh g-1 . Notably, the electrode presents long-term cycling stability (with a negligible ≈0.0007 % capacity decay per cycle), outperforming early reported organic RAB cathodes. 2D-COFs integrate n-type imide and p-type triazine active centres into the periodic porous polymer skeleton. With multiple characterizations, we elucidate the unique Faradaic reaction of the 2D-COF electrode, which involves AlCl2+ and AlCl4 - dual-ions as charge carriers. This work paves the avenue toward novel organic cathodes in RABs.

20.
Kaohsiung J Med Sci ; 39(7): 740-747, 2023 Jul.
Article En | MEDLINE | ID: mdl-37092309

This retrospective observational study aims to investigate the patient-controlled intravenous analgesia (PCIA) of dexmedetomidine (DEX) with nalbuphine (NAL) versus sufentanil (SUF) for post-cesarean delivery management. A total of 300 women were evaluated who underwent cesarean section surgery with combined spinal-epidural anesthesia. After surgery, all patients were connected to a patient-controlled analgesia pump. The PCIA protocol was programmed with 0.11 µg/kg/h DEX in combination with 0.03 µg/kg/h SUF in Group I (n = 150) or 0.11 µg/kg/h DEX in combination with 0.03 mg/kg/h NAL in Group II (n = 150). There was no significant difference in incision pain and sedation level between the two groups within 48 h after the surgery assessed by visual analog scale (VAS) and Ramsay sedation scale, respectively. However, at 2, 6, 12, and 24 h after surgery, visceral pain at rest and at mobilization was alleviated in the Group II as compared with the Group I with lower VAS scores. Moreover, fewer adverse reactions were found in the Group II when compared with Group I, including postpartum respiratory depression, nausea/vomiting, urinary retention, and cardiovascular events. Overall, there was an increased patient satisfaction in the Group II as compared with the Group I. Based on the results of this study, it seems that adding NAL to PCIA with DEX, as compared to SUF with DEX, have an effect on reducing the intensity of visceral pain after cesarean section with less adverse reactions and higher patient satisfaction.


Analgesics, Non-Narcotic , Dexmedetomidine , Nalbuphine , Visceral Pain , Humans , Female , Pregnancy , Sufentanil/therapeutic use , Sufentanil/adverse effects , Nalbuphine/therapeutic use , Dexmedetomidine/therapeutic use , Analgesics, Non-Narcotic/therapeutic use , Cesarean Section/adverse effects , Visceral Pain/chemically induced , Visceral Pain/drug therapy , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Analgesia, Patient-Controlled/methods , Administration, Intravenous
...