Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.591
Filter
1.
ACS Appl Mater Interfaces ; 16(28): 36811-36820, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38961726

ABSTRACT

Perovskite quantum dots (PQDs) have attracted emerging attention as fluorescent and light-absorbing materials for next-generation optoelectronics due to their outstanding properties and cost-efficiency. However, PQD thin film suffers significant instability due to structure and material failures, which hinders their application in flexible and reliable PQD-based advanced wearable devices. Herein, we use commercial cellulose fiber-based filter paper as a substrate to synthesize PQDs in situ and fabricate PQD-paper free-standing flexible composite film. The abundant hydroxy capping ligands of cellulose fibers and the unique dense network structure of the filter paper can facilitate confined crystallization, forming strong interactions between the PQDs and substrate, the unpackaged PQD composite film showed extraordinary stability (>30 days) in the air with high humidity (90%). Meanwhile, the strong interaction between PQDs and paper enables an ultrasimple drop-cast synthesis process with excellent process tolerance, making it customizable and easy to scale up (10 cm in diameter). Due to the uniformly dispersed PQDs on cellulose fibers of the substrate, the composite demonstrates impressive photo-responsive properties. Photodetector (PD) arrays were designed on free-standing PQD paper and flexible graphitic electrodes, and circuits were fabricated by drawing. The PD arrays can work as optical and electrical dual-mode image sensors with incredible bending robustness, enduring up to 100,000 cycles at 180°.

2.
Front Oncol ; 14: 1404799, 2024.
Article in English | MEDLINE | ID: mdl-39007100

ABSTRACT

Background: Our study aimed to develop a nomogram incorporating cytokeratin fragment antigen 21-1 (CYFRA21-1) to assist in differentiating between patients with intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Methods: A total of 487 patients who were diagnosed with ICC and HCC at Qilu Hospital of Shandong University were included in this study. The patients were divided into a training cohort and a validation cohort based on whether the data collection was retrospective or prospective. Univariate and multivariate analyses were employed to select variables for the nomogram. The discrimination and calibration of the nomogram were evaluated using the area under the receiver operating characteristic curve (AUC) and calibration plots. Decision curve analysis (DCA) was used to assess the nomogram's net benefits at various threshold probabilities. Results: Six variables, including CYFRA21-1, were incorporated to establish the nomogram. Its satisfactory discriminative ability was indicated by the AUC (0.972 for the training cohort, 0.994 for the validation cohort), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) values. The Hosmer-Lemeshow test and the calibration plots demonstrated favorable consistency between the nomogram predictions and the actual observations. Moreover, DCA revealed the clinical utility and superior discriminative ability of the nomogram compared to the model without CYFRA21-1 and the model consisting of the logarithm of alpha-fetoprotein (Log AFP) and the logarithm of carbohydrate antigen 19-9 (Log CA19-9). Additionally, the AUC values suggested that the discriminative ability of Log CYFRA21-1 was greater than that of the other variables used as diagnostic biomarkers. Conclusions: This study developed and validated a nomogram including CYFRA21-1, which can aid clinicians in the differential diagnosis of ICC and HCC patients.

3.
NPJ Breast Cancer ; 10(1): 54, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951507

ABSTRACT

Intrinsic breast cancer molecular subtyping (IBCMS) provides significant prognostic information for patients with breast cancer and helps determine treatment. This study compared IBCMS methods on various gene-expression platforms in PALOMA-2 and PALLET trials. PALOMA-2 tumor samples were profiled using EdgeSeq and nanostring and subtyped with AIMS, PAM50, and research-use-only (ruo)Prosigna. PALLET tumor biopsies were profiled using mRNA sequencing and subtyped with AIMS and PAM50. In PALOMA-2 (n = 222), a 54% agreement was observed between results from AIMS and gold-standard ruoProsigna, with AIMS assigning 67% basal-like to HER2-enriched. In PALLET (n = 224), a 69% agreement was observed between results from PAM50 and AIMS. Different IBCMS methods may lead to different results and could misguide treatment selection; hence, a standardized clinical PAM50 assay and computational approach should be used.Trial number: NCT01740427.

4.
Cell Rep ; 43(7): 114424, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959111

ABSTRACT

Metabolic reprogramming dictates tumor molecular attributes and therapeutic potentials. However, the comprehensive metabolic characteristics in gastric cancer (GC) remain obscure. Here, metabolic signature-based clustering analysis identifies three subtypes with distinct molecular and clinical features: MSC1 showed better prognosis and upregulation of the tricarboxylic acid (TCA) cycle and lipid metabolism, combined with frequent TP53 and RHOA mutation; MSC2 had moderate prognosis and elevated nucleotide and amino acid metabolism, enriched by intestinal histology and mismatch repair deficient (dMMR); and MSC3 exhibited poor prognosis and enhanced glycan and energy metabolism, accompanied by diffuse histology and frequent CDH1 mutation. The Shandong Provincial Hospital (SDPH) in-house dataset with matched transcriptomic, metabolomic, and spatial-metabolomic analysis also validated these findings. Further, we constructed the metabolic subtype-related prognosis gene (MSPG) scoring model to quantify the activity of individual tumors and found a positive correlation with cuproptosis signaling. In conclusion, comprehensive recognition of the metabolite signature can enhance the understanding of diversity and heterogeneity in GC.

5.
J Colloid Interface Sci ; 675: 451-460, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981254

ABSTRACT

HYPOTHESIS: Ice friction plays a crucial role in both basic study and practical use. Various strategies for controlling ice friction have been developed. However, one unsolved puzzle regarding ice friction is the effect of ion-ice interplay on its tribological properties. EXPERIMENTS AND SIMULATIONS: Here, we conducted ice friction experiments and summarized the specific effects of hydrated ions on ice friction. By selecting cations and anions, the coefficient of ice friction can be reduced by more than 70 percent. Experimental spectra, low-field nuclear magnetic resonance (LF-NMR), density functional theory (DFT) calculations, and Molecular dynamics (MD) simulations demonstrated that the addition of ions could break the H-bonds in water. FINDINGS: The link between the charge density of ions and the coefficients of ice friction was revealed. A part of the ice structure was changed from an ice-like to a liquid-like interfacial water structure with the addition of ions. Lower charge density ions led to weaker ionic forces with the water molecules in the immobilized water layer, resulting in free water molecules increasing in the lubricating layer. This study provides guidance for preparing ice-making solutions with low friction coefficients and a fuller understanding of the interfacial water structure at low temperatures.

6.
Cell Death Differ ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987382

ABSTRACT

Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/ß-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/ß-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/ß-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the ß-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/ß-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/ß-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.

7.
Eur Radiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987399

ABSTRACT

OBJECTIVE: To investigate the value of radiomics analysis of dual-layer spectral-detector computed tomography (DLSCT)-derived iodine maps for predicting tumor deposits (TDs) preoperatively in patients with colorectal cancer (CRC). MATERIALS AND METHODS: A total of 264 pathologically confirmed CRC patients (TDs + (n = 80); TDs - (n = 184)) who underwent preoperative DLSCT from two hospitals were retrospectively enrolled, and divided into training (n = 124), testing (n = 54), and external validation cohort (n = 86). Conventional CT features and iodine concentration (IC) were analyzed and measured. Radiomics features were derived from venous phase iodine maps from DLSCT. The least absolute shrinkage and selection operator (LASSO) was performed for feature selection. Finally, a support vector machine (SVM) algorithm was employed to develop clinical, radiomics, and combined models based on the most valuable clinical parameters and radiomics features. Area under receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis were used to evaluate the model's efficacy. RESULTS: The combined model incorporating the valuable clinical parameters and radiomics features demonstrated excellent performance in predicting TDs in CRC (AUCs of 0.926, 0.881, and 0.887 in the training, testing, and external validation cohorts, respectively), which outperformed the clinical model in the training cohort and external validation cohorts (AUC: 0.839 and 0.695; p: 0.003 and 0.014) and the radiomics model in two cohorts (AUC: 0.922 and 0.792; p: 0.014 and 0.035). CONCLUSION: Radiomics analysis of DLSCT-derived iodine maps showed excellent predictive efficiency for preoperatively diagnosing TDs in CRC, and could guide clinicians in making individualized treatment strategies. CLINICAL RELEVANCE STATEMENT: The radiomics model based on DLSCT iodine maps has the potential to aid in the accurate preoperative prediction of TDs in CRC patients, offering valuable guidance for clinical decision-making. KEY POINTS: Accurately predicting TDs in CRC patients preoperatively based on conventional CT features poses a challenge. The Radiomics model based on DLSCT iodine maps outperformed conventional CT in predicting TDs. The model combing DLSCT iodine maps radiomics features and conventional CT features performed excellently in predicting TDs.

8.
J Nanobiotechnology ; 22(1): 403, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982427

ABSTRACT

BACKGROUND: Following spinal cord injury (SCI), the inflammatory storm initiated by microglia/macrophages poses a significant impediment to the recovery process. Exosomes play a crucial role in the transport of miRNAs, facilitating essential cellular communication through the transfer of genetic material. However, the miRNAs from iPSC-NSCs-Exos and their potential mechanisms leading to repair after SCI remain unclear. This study aims to explore the role of iPSC-NSCs-Exos in microglia/macrophage pyroptosis and reveal their potential mechanisms. METHODS: iPSC-NSCs-Exos were characterized and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. A mouse SCI model and a series of in vivo and in vitro experiments were conducted to investigate the therapeutic effects of iPSC-NSCs-Exos. Subsequently, miRNA microarray analysis and rescue experiments were performed to confirm the role of miRNAs in iPSC-NSCs-Exos in SCI. Mechanistic studies were carried out using Western blot, luciferase activity assays, and RNA-ChIP. RESULTS: Our findings revealed that iPSC-NSCs-derived exosomes inhibited microglia/macrophage pyroptosis at 7 days post-SCI, maintaining myelin integrity and promoting axonal growth, ultimately improving mice motor function. The miRNA microarray showed let-7b-5p to be highly enriched in iPSC-NSCs-Exos, and LRIG3 was identified as the target gene of let-7b-5p. Through a series of rescue experiments, we uncovered the connection between iPSC-NSCs and microglia/macrophages, revealing a novel target for treating SCI. CONCLUSION: In conclusion, we discovered that iPSC-NSCs-derived exosomes can package and deliver let-7b-5p, regulating the expression of LRIG3 to ameliorate microglia/macrophage pyroptosis and enhance motor function in mice after SCI. This highlights the potential of combined therapy with iPSC-NSCs-Exos and let-7b-5p in promoting functional recovery and limiting inflammation following SCI.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , Macrophages , MicroRNAs , Microglia , Pyroptosis , Spinal Cord Injuries , Animals , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice , Microglia/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Female , Male
9.
J Transl Med ; 22(1): 644, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982507

ABSTRACT

BACKGROUND: Genetic disorders often manifest as abnormal fetal or childhood development. Copy number variations (CNVs) represent a significant genetic mechanism underlying such disorders. Despite their importance, the effectiveness of clinical exome sequencing (CES) in detecting CNVs, particularly small ones, remains incompletely understood. We aimed to evaluate the detection of both large and small CNVs using CES in a substantial clinical cohort, including parent-offspring trios and proband only analysis. METHODS: We conducted a retrospective analysis of CES data from 2428 families, collected from 2018 to 2021. Detected CNV were categorized as large or small, and various validation techniques including chromosome microarray (CMA), Multiplex ligation-dependent probe amplification assay (MLPA), and/or PCR-based methods, were employed for cross-validation. RESULTS: Our CNV discovery pipeline identified 171 CNV events in 154 cases, resulting in an overall detection rate of 6.3%. Validation was performed on 113 CNVs from 103 cases to assess CES reliability. The overall concordance rate between CES and other validation methods was 88.49% (100/113). Specifically, CES demonstrated complete consistency in detecting large CNV. However, for small CNVs, consistency rates were 81.08% (30/37) for deletions and 73.91% (17/23) for duplications. CONCLUSION: CES demonstrated high sensitivity and reliability in CNV detection. It emerges as an economical and dependable option for the clinical CNV detection in cases of developmental abnormalities, especially fetal structural abnormalities.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Genetic Diseases, Inborn , Humans , DNA Copy Number Variations/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Reproducibility of Results , Female , Predictive Value of Tests , Male , Retrospective Studies
10.
Sci Total Environ ; 947: 174637, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986692

ABSTRACT

Microplastics are widespread in freshwaters, yet their interaction with navigational structures remains unclear. This study compared the distribution and characteristics of microplastics before and after navigation in Wabu Lake. Microplastic concentrations decreased significantly in both surface water and sediment due to navigation opened, from 13.7 ± 6.56 to 3.12 ± 1.8 p L-1 (p < 0.001) and from 568 ± 286 to 174 ± 60.2 p kg-1 (p < 0.001), respectively. Acrylates copolymer was frequently detected in surface water and sediment before navigation, whereas the dominant polymer after navigation was chlorinated polyisoprene in surface water and chlorinated polyethylene in sediment. The results showed that three-years dredging induced relatively severe microplastic pollution before navigation, however, these microplastics were apparently eliminated after navigation, as the distribution and characteristics of microplastics thoroughly varied. This study provides a valuable finding that microplastic transport process can be facilitated by water transfer project, which should be considered for preventing microplastic pollution.

11.
Front Pharmacol ; 15: 1407200, 2024.
Article in English | MEDLINE | ID: mdl-38989151

ABSTRACT

Introduction: Panax ginseng C. A. Mey. (Araliaceae; Ginseng Radix et Rhizoma), a traditional plant commonly utilized in Eastern Asia, has demonstrated efficacy in treating neuro-damaging diseases and diabetes mellitus. However, its precise roles and mechanism in alleviating type 2 diabetes mellitus (T2DM) need further study. The objective of this study is to explore the pharmacological effects of ginseng extract and elucidate its potential mechanisms in protecting islets and promoting ß-cell regeneration. Methods: The T2DM mouse model was induced through streptozotocin combined with a high-fat diet. Two batches of mice were sacrificed on the 7th and 28th days following ginseng extract administration. Body weight, fasting blood glucose levels, and glucose tolerance were detected. Morphological changes in the pancreatic islets were examined via H & E staining. Levels of serum insulin, glucagon, GLP-1, and inflammatory factors were measured using ELISA. The ability of ginseng extract to promote pancreatic islet ß-cell regeneration was evaluated through insulin & PCNA double immunofluorescence staining. Furthermore, the mechanism behind ß-cells regeneration was explored through insulin & glucagon double immunofluorescence staining, accompanied by immunohistochemical staining and western blot analyses. Results and Discussion: The present research revealed that ginseng extract alleviates symptoms of T2DM in mice, including decreased blood glucose levels and improved glucose tolerance. Serum levels of insulin, GLP-1, and IL-10 increased following the administration of ginseng extract, while levels of glucagon, TNF-α, and IL-1ß decreased. Ginseng extract preserved normal islet morphology, increased nascent ß-cell population, and inhibited inflammatory infiltration within the islets, moreover, it decreased α-cell proportion while increasing ß-cell proportion. Mechanistically, ginseng extract might inhibit ARX and MAFB expressions, increase MAFA level to aid in α-cell to ß-cell transformation, and activate AKT-FOXM1/cyclin D2 to enhance ß-cell proliferation. Our study suggests that ginseng extract may be a promising therapy in treating T2DM, especially in those with islet injury.

12.
Theranostics ; 14(10): 4161-4183, 2024.
Article in English | MEDLINE | ID: mdl-38994022

ABSTRACT

Extracellular vesicles (EVs) are enclosed by a nanoscale phospholipid bilayer membrane and typically range in size from 30 to 200 nm. They contain a high concentration of specific proteins, nucleic acids, and lipids, reflecting but not identical to the composition of the parent cell. The inherent characteristics and variety of EVs give them extensive and unique advantages in the field of cancer identification and treatment. Recently, EVs have been recognized as potential tumor markers for the detection of cancer. Aptamers, which are molecules of single-stranded DNA or RNA, demonstrate remarkable specificity and affinity for their targets by adopting distinct tertiary structures. Aptamers offer various advantages over their protein counterparts, such as reduced immunogenicity, the ability for convenient large-scale synthesis, and straightforward chemical modification. In this review, we summarized EVs biogenesis, sample collection, isolation, storage and characterization, and finally provided a comprehensive survey of analysis techniques for EVs detection that are based on aptamers.


Subject(s)
Aptamers, Nucleotide , Extracellular Vesicles , Neoplasms , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Humans , Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , Animals
13.
Front Pharmacol ; 15: 1415445, 2024.
Article in English | MEDLINE | ID: mdl-38994205

ABSTRACT

Background: Ischemic Stroke (IS) stands as one of the primary cerebrovascular diseases profoundly linked with inflammation. In the context of neuroinflammation, an excessive activation of microglia has been observed. Consequently, regulating microglial activation emerges as a vital target for neuroinflammation treatment. Catalpol (CAT), a natural compound known for its anti-inflammatory properties, holds promise in this regard. However, its potential to modulate neuroinflammatory responses in the brain, especially on microglial cells, requires comprehensive exploration. Methods: In our study, we investigated into the potential anti-inflammatory effects of catalpol using lipopolysaccharide (LPS)-stimulated BV2 microglial cells as an experimental model. The production of nitric oxide (NO) by LPS-activated BV2 cells was quantified using the Griess reaction. Immunofluorescence was employed to measure glial cell activation markers. RT-qPCR was utilized to assess mRNA levels of various inflammatory markers. Western blot analysis examined protein expression in LPS-activated BV2 cells. NF-κB nuclear localization was detected by immunofluorescent staining. Additionally, molecular docking and molecular dynamics simulations (MDs) were conducted to explore the binding affinity of catalpol with key targets. Results: Catalpol effectively suppressed the production of nitric oxide (NO) induced by LPS and reduced the expression of microglial cell activation markers, including Iba-1. Furthermore, we observed that catalpol downregulated the mRNA expression of proinflammatory cytokines such as IL-6, TNF-α, and IL-1ß, as well as key molecules involved in the NLRP3 inflammasome and NF-κB pathway, including NLRP3, NF-κB, caspase-1, and ASC. Our mechanistic investigations shed light on how catalpol operates against neuroinflammation. It was evident that catalpol significantly inhibited the phosphorylation of NF-κB and NLRP3 inflammasome activation, both of which serve as upstream regulators of the inflammatory cascade. Molecular docking and MDs showed strong binding interactions between catalpol and key targets such as NF-κB, NLRP3, and IL-1ß. Conclusion: Our findings support the idea that catalpol holds the potential to alleviate neuroinflammation, and it is achieved by inhibiting the activation of NLRP3 inflammasome and NF-κB, ultimately leading to the downregulation of pro-inflammatory cytokines. Catalpol emerges as a promising candidate for the treatment of neuroinflammatory conditions.

14.
Int Immunopharmacol ; 139: 112666, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002521

ABSTRACT

Immunotherapy has limited response rates in colorectal cancer (CRC) due to an immunosuppressive tumor microenvironment (TME). Combining transcriptome sequencing, clinical specimens, and functional experiments, we identified a unique group of CAF subpopulations (COX4I2 + ) with inhibited mitochondrial respiration and enhanced glycolysis. Through bioinformatics predictions and luciferase reporter assays, we determined that EBF1 can upstreamly regulate COX4I2 transcription. COX4I2 + CAFs functionally and phenotypically resemble myofibroblasts, are important for the formation of the fibrotic TME, and are capable of activating the M2 phenotype of macrophages. In vitro experiments demonstrated that COX4I2 + CAFs promote immunosuppressive TME by blocking CD8 + T cell infiltration and inducing CD8 + T cell dysfunction. Using multiple independent cohorts, we also found a strong correlation between the immunotherapy response rate of CRC patients and COX4I2 expression in their tumors. Our results identify a CAF subpopulation characterized by activation of the EBF1-COX4I2 axis, and this group of CAFs can be targeted to improve cancer immunotherapy outcomes.

15.
J Obstet Gynaecol Can ; : 102613, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004404
16.
Animals (Basel) ; 14(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998106

ABSTRACT

Janus kinase 2 (JAK2) plays a critical role in myoblast proliferation and fat deposition in animals. Our previous RNA-Seq analyses identified a close association between the JAK2 gene and muscle development. To date, research delving into the relationship between the JAK2 gene and growth traits has been sparse. In this study, we sought to investigate the relationship between novel mutations within the JAK2 gene and goat growth traits. Herein, two novel InDel (Insertion/Deletion) polymorphisms within the JAK2 gene were detected in 548 goats, and only two genotypes were designated as ID (Insertion/Deletion) and DD (Deletion/Deletion). The results indicate that the two InDels, the del19008 locus in intron 2 and del72416 InDel in intron 6, showed significant associations with growth traits (p < 0.05). Compared to Nubian and Jianzhou Daer goats, the del72416 locus displayed a more pronounced effect in the Fuqing breed group. In the Nubian breed (NB) group, both InDels showed a marked influence on body height (BH). There were strong linkages observed for these two InDels between the Fuqing (FQ) and Jianzhou (JZ) populations. The DD-ID diplotype was associated with inferior growth traits in chest width (ChW) and cannon circumference (CaC) in the FQ goats compared to the other diplotypes. In the NB population, the DD-DD diplotype exhibited a marked negative impact on BH and HuWI (hucklebone width index), in contrast to the other diplotypes. In summary, our findings suggest that the two InDel polymorphisms within the JAK2 gene could serve as valuable molecular markers for enhancing goat growth traits in breeding programs.

17.
Article in English | MEDLINE | ID: mdl-39007413

ABSTRACT

Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm). Fluorescent labeling and dynamic tracking across three dimensions expose GMT-NE's superior diffusion into oral biofilms, yielding a robust antimicrobial effect with 99.99% killing for both streptococcal and Candida species and marked reductions in bacterial cell viability compared to CMT-NE (∼4-log reduction). Oral mucosa tissue cultures affirm the biocompatibility of both NEs with no morphological or structural changes, showcasing their potential for combating intractable biofilm infections in oral environment. This study advances our understanding of NE surface charges and their interactions within interkingdom biofilms, providing insights crucial for addressing complex infections involving bacteria and fungi in the demanding oral context.

18.
J Am Chem Soc ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007743

ABSTRACT

Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.

19.
Nat Commun ; 15(1): 5636, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965232

ABSTRACT

Natural antimicrobial peptides (AMPs) and enzymes (AMEs) are promising non-antibiotic candidates against antimicrobial resistance but suffer from low efficiency and poor stability. Here, we develop peptide nanozymes which mimic the mode of action of AMPs and AMEs through de novo design and peptide assembly. Through modelling a minimal building block of IHIHICI is proposed by combining critical amino acids in AMPs and AMEs and hydrophobic isoleucine to conduct assembly. Experimental validations reveal that IHIHICI assemble into helical ß-sheet nanotubes with acetate modulation and perform phospholipase C-like and peroxidase-like activities with Ni coordination, demonstrating high thermostability and resistance to enzymatic degradation. The assembled nanotubes demonstrate cascade antifungal actions including outer mannan docking, wall disruption, lipid peroxidation and subsequent ferroptotic death, synergistically killing >90% Candida albicans within 10 min on disinfection pad. These findings demonstrate an effective de novo design strategy for developing materials with multi-antimicrobial mode of actions.


Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Microbial Sensitivity Tests , Nanotubes/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Lipid Peroxidation/drug effects , Peptides/pharmacology , Peptides/chemistry
20.
Sci Rep ; 14(1): 15368, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965410

ABSTRACT

To detect and analyze the changes of microorganisms in expressed prostatic secretion (EPS) of patients with IIIB prostatitis before and after low-intensity pulsed ultrasound (LIPUS) treatment, and to explore the mechanism of LIPUS in the treatment of chronic prostatitis (CP). 25 patients (study power was estimated using a Dirichlet-multinomial approach and reached 96.5% at α = 0.05 using a sample size of 25) with IIIB prostatitis who were effective in LIPUS treatment were divided into two groups before and after LIPUS treatment. High throughput second-generation sequencing technique was used to detect and analyze the relative abundance of bacterial 16 s ribosomal variable regions in EPS before and after treatment. The data were analyzed by bioinformatics software and database, and differences with P < 0.05 were considered statistically significant. Beta diversity analysis showed that there was a significant difference between groups (P = 0.046). LEfSe detected four kinds of characteristic microorganisms in the EPS of patients with IIIB prostatitis before and after LIPUS treatment. After multiple comparisons among groups by DESeq2 method, six different microorganisms were found. LIPUS may improve patients' clinical symptoms by changing the flora structure of EPS, stabilizing and affecting resident bacteria or opportunistic pathogens.


Subject(s)
Prostate , Prostatitis , Ultrasonic Waves , Humans , Male , Prostatitis/therapy , Prostatitis/microbiology , Prostatitis/metabolism , Prostate/microbiology , Prostate/metabolism , Prostate/pathology , Adult , Bacteria/metabolism , Bacteria/genetics , Middle Aged , Ultrasonic Therapy/methods , Microbiota , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL