Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Front Public Health ; 12: 1410722, 2024.
Article in English | MEDLINE | ID: mdl-38952739

ABSTRACT

Radiological science and nuclear technology have made great strides in the twenty-first century, with wide-ranging applications in various fields, including energy, medicine, and industry. However, those developments have been accompanied by the inherent risks of exposure to nuclear radiation, which is a source of concern owing to its potentially adverse effects on human health and safety and which is of particular relevance to medical personnel who may be exposed to certain cancers associated with low-dose radiation in their working environment. While medical radiation workers have seen a decrease in their occupational exposure since the 1950s thanks to improved measures for radiation protection, a concerning lack of understanding and awareness persists among medical professionals regarding these potential hazards and the required safety precautions. This issue is further compounded by insufficient capabilities in emergency response. This highlights the urgent need to strengthen radiation safety education and training to ensure the well-being of medical staff who play a critical role in radiological and nuclear emergencies. This review examines the health hazards of nuclear radiation to healthcare workers and the awareness and willingness and education of healthcare workers on radiation protection, calling for improved training programs and emergency response skills to mitigate the risks of radiation exposure in the occupational environment, providing a catalyst for future enhancement of radiation safety protocols and fostering of a culture of safety in the medical community.


Subject(s)
Health Personnel , Occupational Exposure , Radiation Protection , Humans , Occupational Exposure/prevention & control , Radioactive Hazard Release , Radiation Injuries/prevention & control , Health Knowledge, Attitudes, Practice , Awareness
2.
Int J Nanomedicine ; 19: 6035-6055, 2024.
Article in English | MEDLINE | ID: mdl-38911505

ABSTRACT

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social interaction and communication and can cause stereotypic behavior. Fullerenols, a type of carbon nanomaterial known for its neuroprotective properties, have not yet been studied for their potential in treating ASD. We aimed to investigate its role in improving autistic behaviors in BTBR T+Itpr3tf/J (BTBR) mice and its underlying mechanism, which could provide reliable clues for future ASD treatments. Methods: Our research involved treating C57BL/6J (C57) and BTBR mice with either 0.9% NaCl or fullerenols (10 mg/kg) daily for one week at seven weeks of age. We then conducted ASD-related behavioral tests in the eighth week and used RNA-seq to screen for vital pathways in the mouse hippocampus. Additionally, we used real-time quantitative PCR (RT-qPCR) to verify related pathway genes and evaluated the number of stem cells in the hippocampal dentate gyrus (DG) by Immunofluorescence staining. Results: Our findings revealed that fullerenols treatment significantly improved the related ASD-like behaviors of BTBR mice, manifested by enhanced social ability and improved cognitive deficits. Immunofluorescence results showed that fullerenols treatment increased the number of DCX+ and SOX2+/GFAP+ cells in the DG region of BTBR mice, indicating an expanded neural progenitor cell (NPC) pool of BTBR mice. RNA-seq analysis of the mouse hippocampus showed that VEGFA was involved in the rescued hippocampal neurogenesis by fullerenols treatment. Conclusion: In conclusion, our findings suggest that fullerenols treatment improves ASD-like behavior in BTBR mice by upregulating VEGFA, making nanoparticle- fullerenols a promising drug for ASD treatment.


Subject(s)
Autism Spectrum Disorder , Cognitive Dysfunction , Disease Models, Animal , Doublecortin Protein , Fullerenes , Mice, Inbred C57BL , Animals , Mice , Fullerenes/pharmacology , Fullerenes/chemistry , Autism Spectrum Disorder/drug therapy , Cognitive Dysfunction/drug therapy , Male , Social Behavior , Behavior, Animal/drug effects , Hippocampus/drug effects , Vascular Endothelial Growth Factor A/genetics , Neuroprotective Agents/pharmacology , Neurogenesis/drug effects , Autistic Disorder/drug therapy
3.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893331

ABSTRACT

To realize high-energy-density Li metal batteries at low temperatures, a new electrolyte is needed to solve the high-voltage compatibility and fast lithium-ion de-solvation process. A gel polymer electrolyte with a small-molecular-weight polymer is widely investigated by combining the merits of a solid polymer electrolyte (SPE) and liquid electrolyte (LE). Herein, we present a new gel polymer electrolyte (P-DOL) by the lithium difluoro(oxalate)borate (LiDFOB)-initiated polymerization process using 1,3-dioxolane (DOL) as a monomer solvent. The P-DOL presents excellent ionic conductivity (1.12 × 10-4 S cm-1) at -20 °C, with an oxidation potential of 4.8 V. The Li‖LiCoO2 cell stably cycled at 4.3 V under room temperature, with a discharge capacity of 130 mAh g-1 at 0.5 C and a capacity retention rate of 86.4% after 50 cycles. Moreover, a high-Ni-content LiNi0.8Co0.1Mn0.1O2 (NCM811) cell can steadily run for 120 cycles at -20 °C, with a capacity retention of 88.4%. The underlying mechanism of high-voltage compatibility originates from the dense and robust B- and F-rich cathode interface layer (CEI) formed at the cathode interface. Our report will shed light on the real application of Li metal batteries under all-climate conditions in the future.

4.
Sensors (Basel) ; 24(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38894263

ABSTRACT

In order to improve the efficiency and accuracy of multitarget detection of soldering defects on surface-mounted components in Printed Circuit Board (PCB) fabrication, we propose a sample generation method using Stable Diffusion Model and ControlNet, as well as a defect detection method based on the Swin Transformer. The method consists of two stages: First, high-definition original images collected in industrial production and the corresponding prompts are input to Stable Diffusion Model and ControlNet for automatic generation of nonindependent samples. Subsequently, we integrate Swin Transformer as the backbone into the Cascade Mask R-CNN to improve the quality of defect features extracted from the samples for accurate detection box localization and segmentation. Instead of segmenting individual components on the PCB, the method inspects all components in the field of view simultaneously over a larger area. The experimental results demonstrate the effectiveness of our method in scaling up nonindependent sample datasets, thereby enabling the generation of high-quality datasets. The method accurately recognizes targets and detects defect types when performing multitarget inspection on printed circuit boards. The analysis against other models shows that our improved defect detection and segmentation method improves the Average Recall (AR) by 2.8% and the mean Average Precision (mAP) by 1.9%.

5.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856215

ABSTRACT

This study showcases a comprehensive treatment protocol for high-risk hepatocellular carcinoma (HCC) patients, focusing on the combined use of Y-90 transarterial radioembolization (TARE) and Programmed Cell Death-1 (PD-1) inhibitors as neoadjuvant therapy. Highlighted through a case report, it offers a step-by-step reference for similar therapeutic interventions. A retrospective analysis was conducted on a patient who underwent hepatectomy following Y-90 TARE and PD-1 inhibitor treatment. Key demographic and clinical details were recorded at admission to guide therapy selection. Y-90 TARE suitability and dosage calculation were based on Technetium-99m (Tc-99m) macroaggregated albumin (MAA) perfusion mapping tests. Lesion coverage by Y-90 microspheres was confirmed through single photon emission computed tomography/computed tomography (SPECT/CT) fusion imaging, and adverse reactions and follow-up outcomes were meticulously documented. The patient, with a 7.2 cm HCC in the right hepatic lobe (T1bN0M0, BCLC A, CNLC Ib) and an initial alpha-fetoprotein (AFP) level of 66,840 ng/mL, opted for Y-90 TARE due to high recurrence risk and initial surgery refusal. The therapy's parameters, including the lung shunting fraction (LSF) and non-tumor ratio (TNR), were within therapeutic limits. A total of 1.36 GBq Y-90 was administered. At 1 month post-therapy, the tumor shrank to 6 cm with partial necrosis, and AFP levels dropped to 21,155 ng/mL, remaining stable for 3 months. After 3 months, PD-1 inhibitor treatment led to further tumor reduction to 4 cm and AFP decrease to 1.84 ng/mL. The patient then underwent hepatectomy; histopathology confirmed complete tumor necrosis. At 12 months post-surgery, no tumor recurrence or metastasis was observed in follow-up sessions. This protocol demonstrates the effective combination of Y-90 TARE and PD-1 inhibitor as a bridging strategy to surgery for HCC patients at high recurrence risk, providing a practical guide for implementing this approach.


Subject(s)
Carcinoma, Hepatocellular , Embolization, Therapeutic , Liver Neoplasms , Neoadjuvant Therapy , Yttrium Radioisotopes , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Neoadjuvant Therapy/methods , Embolization, Therapeutic/methods , Yttrium Radioisotopes/therapeutic use , Male , Retrospective Studies , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Aged , Radiopharmaceuticals/therapeutic use
6.
Med Sci Monit ; 30: e943369, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877693

ABSTRACT

BACKGROUND Osteoarthritis (OA) is a chronic degenerative disease characterized by synovitis and has been implicated in sphingolipid metabolism disorder. However, the role of sphingolipid metabolism pathway (SMP)-related genes in the occurrence of OA and synovial immune dysregulation remains unclear. MATERIAL AND METHODS In this study, we obtained synovium-related databases from GEO (n=40 for both healthy controls and OA) and analyzed the expression levels of SMP-related genes. Using 2 algorithms, we identified hub genes and developed a diagnostic model incorporating these hub genes to predict the occurrence of OA. Subsequently, the hub genes were further validated in peripheral blood samples from OA patients. Additionally, CIBERSORT and MCP-counter analyses were employed to explore the correlation between hub genes and immune dysregulation in OA synovium. WGCNA was used to determine enriched modules in different clusters. RESULTS Overall, the expression levels of SMP genes were upregulated in OA synovium. We identified 6 hub genes of SMP and constructed an excellent diagnostic model (AUC=0.976). The expression of re-confirmed hub genes showed associations with immune-related cell infiltration and levels of inflammatory cytokines. Furthermore, we observed heterogeneity in the expression patterns of hub genes across different clusters of OA. Notably, older patients displayed increased susceptibility to elevated levels of pain-related inflammatory cytokines and infiltration of immune cells. CONCLUSIONS The SMP-related hub genes have the potential to serve as diagnostic markers for OA patients. Moreover, the 4 hub genes of SMP demonstrate wide participation in immune dysregulation in OA synovium. The activation of different pathways is observed among different populations of patients with OA.


Subject(s)
Osteoarthritis , Sphingolipids , Synovial Membrane , Humans , Synovial Membrane/metabolism , Osteoarthritis/genetics , Osteoarthritis/diagnosis , Osteoarthritis/metabolism , Osteoarthritis/immunology , Sphingolipids/metabolism , Gene Expression Profiling/methods , Gene Regulatory Networks , Male , Female , Transcriptome/genetics , Databases, Genetic , Middle Aged , Case-Control Studies
7.
Chemistry ; : e202400874, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853144

ABSTRACT

MXenes, a class of two-dimensional transition metal carbides, nitrides, and carbonitrides, have garnered significant attention due to their remarkable potential for energy storage, electrocatalysis, and gas separation applications. The fabrication processes of MXene involve building up the MXene structure from constituent elements and the selective elimination of M-A bonds from the precursor MAX. However, considerable efforts are still required to design and develop efficient MXene-based technologies. This review article aims to briefly analyse the synthesis methods employed for MXene production, ranging from direct synthesis and conventional chemical wet etching approach to the more recent molten salt etching technique. The review highlights the advancements made in achieving precise control over the terminal groups, which is paramount for tailoring the properties of MXenes for specific applications. Furthermore, the potential of MXene-based materials for carbon capture applications, particularly in developing advanced adsorbents, is emphasized. The in-depth examination of MXene synthesis techniques and their implications for carbon capture applications provides a solid foundation for developing and optimizing these promising materials.

8.
J Hazard Mater ; 475: 134944, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889470

ABSTRACT

Although conventional nanofiltration (NF) membrane is widely applied in water treatment, it faces the challenges of insufficient selectivity toward emerging contaminants, low permeability and non-sustainable fouling control. Herein, a novel electroactive metal-organic frameworks/carbon nanotubes membrane was constructed by facile and green nanobubbles-mediated non-solvent-induced phase separation (NIPS) strategy for ultrafast antibiotics removal. It presented 3-fold to 100-fold higher permeability (101.3-105.7 L·h-1·m-2·bar-1) without compromising rejection (71.8 %-99.3 %) of common antibiotics (tetracycline, norfloxacin, sulfamethoxazole, sulfamethazine) than most commercial and state-of-the-art NF membranes. The separation mechanism was due to the synergy of loose selective layer with three-dimensional interconnected networks and UiO-66/CNTs with unique pore sieving and charge property. It also presented excellent antibiotics selectivity with high NaCl/tetracycline separation factor of 194 and CuCl2/tetracycline separation factor of 316 for remediation of antibiotics and heavy metal combined pollution. Meanwhile, it possessed efficient anti-fouling, antibacterial and electro-driven self-cleaning ability, which enabled sustainable fouling control and disinfection with short process, low energy and chemical consumption. Furthermore, potential application of UiO-66/CNTs membrane in wastewater reclamation was demonstrated by stable antibiotics rejection, efficient flux recovery and long-term stability over 260 h. This study would provide useful insights into removal of emerging contaminants from water by advanced NF membrane.


Subject(s)
Anti-Bacterial Agents , Membranes, Artificial , Metal-Organic Frameworks , Nanotubes, Carbon , Water Pollutants, Chemical , Water Purification , Metal-Organic Frameworks/chemistry , Nanotubes, Carbon/chemistry , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Disinfection/methods , Phthalic Acids
9.
Nat Commun ; 15(1): 5248, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898112

ABSTRACT

Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary biased. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.


Subject(s)
Oocytes , Oogenesis , RNA-Binding Proteins , Zebrafish Proteins , Zebrafish , Animals , Female , Male , Gene Expression Regulation, Developmental , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Nutrients/metabolism , Oocytes/metabolism , Oogenesis/genetics , Ovary/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Testis/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
10.
Antioxidants (Basel) ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929161

ABSTRACT

Starch is a common source of carbohydrates in aqua feed. High-starch diet can cause hepatic injury and lipid accumulation in fish. Mangiferin (MGF) can regulate lipid metabolism and protect the liver, but there is limited research on its effects in fish. In the present study, we investigated whether MGF could ameliorate high-starch-induced hepatic damage and lipid accumulation in channel catfish. The channel catfish (Ictalurus punctatus) were fed one of four experimental diets for eight weeks: a control diet (NCD), a high-starch diet (HCD), an HCD supplemented with 100 mg/kg MGF (100 MGF), and an HCD supplemented with 500 mg/kg MGF (500 MGF). The results demonstrated that the weight gain rate (WGR) (p = 0.031), specific growth rate (SGR) (p = 0.039), and feed conversion efficiency (FCE) (p = 0.040) of the 500 MGF group were significantly higher than those of the NCD group. MGF supplementation alleviated liver damage and improved antioxidant capacity (T-AOC) compared to those of the HCD group (p = 0.000). In addition, dietary MGF significantly reduced plasma glucose (GLU) (p = 0.000), triglyceride (TG) (p= 0.001), and low-density lipoprotein cholesterol (LDL) (p = 0.000) levels. It is noteworthy that MGF significantly reduced the plasma total cholesterol (TC) levels (p = 0.000) and liver TC levels (p = 0.005) of channel catfish. Dietary MGF improves cholesterol homeostasis by decreasing the expression of genes that are involved in cholesterol synthesis and transport (hmgcr, sqle, srebf2, sp1, and ldlr) and increasing the expression of genes that are involved in cholesterol catabolism (cyp7a1). Among them, the largest fold decrease in squalene epoxidase (sqle) expression levels was observed in the 100 MGF or 500 MGF groups compared with the HCD group, with a significant decrease of 3.64-fold or 2.20-fold (p = 0.008). And the 100 MGF or 500 MGF group had significantly decreased (by 1.67-fold or 1.94-fold) Sqle protein levels compared to those of the HCD group (p = 0.000). In primary channel catfish hepatocytes, MGF significantly down-regulated the expression of sqle (p = 0.030) and reduced cholesterol levels (p = 0.000). In NCTC 1469 cells, MGF significantly down-regulated the expression of sqle (p = 0.000) and reduced cholesterol levels (p = 0.024). In conclusion, MGF effectively inhibits sqle expression and reduces cholesterol accumulation. The current study shows how MGF supplementation regulates the metabolism and accumulation of cholesterol in channel catfish, providing a theoretical basis for the use of MGF as a dietary supplement in aquaculture.

11.
Diabetes Metab ; 50(4): 101543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761920

ABSTRACT

Autism spectrum disorders (ASD) encompass a collection of neurodevelopmental disorders that exhibit impaired social interactions and repetitive stereotypic behaviors. Although the exact cause of these disorders remains unknown, it is widely accepted that both genetic and environmental factors contribute to their onset and progression. Recent studies have highlighted the potential negative impact of maternal diabetes on embryonic neurodevelopment, suggesting that intrauterine hyperglycemia could pose an additional risk to early brain development and contribute to the development of ASD. This paper presents a comprehensive analysis of the current research on the relationship between various forms of maternal diabetes, such as type 1 diabetes mellitus, type 2 diabetes mellitus, and gestational diabetes mellitus, and the likelihood of ASD in offspring. The study elucidates the potential mechanisms through which maternal hyperglycemia affects fetal development, involving metabolic hormones, immune dysregulation, heightened oxidative stress, and epigenetic alterations. The findings of this review offer valuable insights for potential preventive measures and evidence-based interventions targeting ASD.


Subject(s)
Autism Spectrum Disorder , Diabetes Mellitus, Type 1 , Diabetes, Gestational , Prenatal Exposure Delayed Effects , Humans , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/epidemiology , Pregnancy , Female , Diabetes Mellitus, Type 2/epidemiology , Pregnancy in Diabetics
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124474, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763018

ABSTRACT

In recent years, aggregation-induced emission luminogens (AIEgens) have witnessed numerous groundbreaking advances in fundamental theoretical research and functional applications. Notably, stimuli-responsive AIEgens have achieved remarkable results, demonstrating immense potential for application in various fields such as chemistry, materials science, biology, and medicine. Herein, two multi-stimuli-responsive cyanostilbene derivatives TPE-CNTPA and PH-CNTPA were synthesized by introducing tetraphenylethylene (TPE) and trifluoromethyl groups, respectively. Primarily, under the combined mechanism of aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT), TPE-CNTPA and PH-CNTPA exhibit "on-off-on" fluorescent emission characteristics in solution. Secondly, under 365 nm ultraviolet light irradiation, the photo-induced isomerization of PH-CNTPA causes changes in photophysical property, demonstrating its responsiveness to ultraviolet light. In addition, TPE-CNTPA and PH-CNTPA exhibit high-contrast mechanochromic properties, providing broader possibilities for their potential applications in various fields. Moreover, owing to the unique fluorescence emission characteristics, TPE-CNTPA and PH-CNTP have enormous potential for application in the field of encryption anti-counterfeiting. Besides, PH-CNTPA can be utilized for the detection of trace water in single or mixed solvents, demonstrating outstanding sensitivity and anti-interference properties in different solvents. This research work reveals the potential in the fields of water sensing and anti-counterfeiting for these two multi-stimuli-responsive compounds.

13.
Colloids Surf B Biointerfaces ; 239: 113965, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772084

ABSTRACT

Photodynamic therapy (PDT) has become a promising approach and non-invasive modality for cancer treatment, however the therapeutic effect of PDT is limited in tumor metastasis and local recurrence. Herein, a tumor targeted nanomedicine (designated as PCN@HA) is constructed for enhanced PDT against tumors. By modified with hyaluronic acid (HA), which could target the CD44 receptor that expressed on the cancer cells, the targeting ability of PCN@HA has been enhanced. Under light irradiation, PCN@HA can produce cytotoxic singlet oxygen (1O2) and kill cancer cells, then eliminate tumors. Furthermore, PCN@HA exhibits fluorescence (FL)/ photoacoustic (PA) effects for multimodal imaging-guided cancer treatment. And PCN@HA-mediated PDT also can induce immunogenic cell death (ICD) and stimulate adaptive immune responses by releasing of tumor antigens. By combining with anti-PD-L1 checkpoint blockade therapy, it can not only effectively suppress the growth of primary tumor, but also inhibit the metastatic tumor growth.


Subject(s)
Hyaluronic Acid , Immunotherapy , Metal-Organic Frameworks , Photochemotherapy , Porphyrins , Photochemotherapy/methods , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Immunotherapy/methods , Porphyrins/chemistry , Porphyrins/pharmacology , Animals , Humans , Mice , Hyaluronic Acid/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Mice, Inbred BALB C , Singlet Oxygen/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Particle Size , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
14.
Sci Total Environ ; 931: 172866, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705291

ABSTRACT

Tetracycline antibiotics (TCs) are extensively used in clinical medicine, animal husbandry, and aquaculture because of their cost-effectiveness and high antibacterial efficacy. However, the presence of TCs residues in the environment poses risks to humans. In this study, an inner filter effect (IFE) fluorescent probe, 2,2'-(ethane-1,2-diylbis((2-((2-methylquinolin-8-yl)amino)-2-oxoethyl)azanediyl))diacetic acid (MQDA), was developed for the rapid detection of Eu3+ within 30 s. And its complex [MQDA-Eu3+] was successfully used for the detection of TCs. Upon coordination of a carboxyl of MQDA with Eu3+ to form a [MQDA-Eu3+] complex, the carboxyl served as an antenna ligand for the effective detection of Eu3+ to intensify the emission intensity of MQDA via "antenna effect", the process was the energy absorbed by TCs via UV excitation was effectively transferred to Eu3+. Fluorescence quenching of the [MQDA-Eu3+] complex was caused by the IFE in multicolor fluorescence systems. The limits of detection of [MQDA-Eu3+] for oxytetracycline, chlorotetracycline hydrochloride, and tetracycline were 0.80, 0.93, and 1.7 µM in DMSO/HEPES (7:3, v/v, pH = 7.0), respectively. [MQDA-Eu3+] demonstrated sensitive detection of TCs in environmental and food samples with satisfactory recoveries and exhibited excellent imaging capabilities for TCs in living cells and zebrafish with low cytotoxicity. The proposed approach demonstrated considerable potential for the quantitative detection of TCs.


Subject(s)
Anti-Bacterial Agents , Europium , Fluorescent Dyes , Anti-Bacterial Agents/analysis , Fluorescent Dyes/chemistry , Europium/chemistry , Tetracycline/analysis , Tetracyclines/analysis , Animals , Water Pollutants, Chemical/analysis , Fluorescence , Environmental Monitoring/methods , Spectrometry, Fluorescence/methods
15.
Medicine (Baltimore) ; 103(21): e38056, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788046

ABSTRACT

RATIONALE: Intimal sarcoma of inferior vena cava (IVC) is a rare soft tissue sarcoma with no typical symptoms and specific imaging features in the early stage, and there is a lack of standardized treatment and methods. PATIENT CONCERNS: A 54-year-old female patient presented to Fenghua District People's Hospital with a post-active cough and hemoptysis and was subsequently referred to our hospital. DIAGNOSES: The patient was pathologically diagnosed as intimal sarcoma of IVC complicating multiple intrapulmonary metastases. Chest CT revealed left lung malignant tumor with multiple intrapulmonary metastases; while enhanced upper abdominal CT showed cancer embolus of IVC with extension to right atrium and bilateral renal veins. Besides, hematoxylin and eosin staining suggested intimal sarcoma of veins. Immunohistochemical staining showed positivity for PD-L1, Ki-67, CD31, Desmin and ERG. INTERVENTIONS: The patient initially received GT chemotherapy (gemcitabine injection + docetaxel). Then, immunotherapy (tislelizumab) was added based on the results of genetic testing (TP53 gene mutation). OUTCOMES: The disease was stabilized after receiving the treatment. LESSONS: Given the lack of characteristic clinical manifestations in patients with intimal sarcoma of IVC, imaging examination combined with immunohistochemical index were helpful for diagnosis of intimal sarcoma of IVC. Furthermore, the combination of tislelizumab and GT chemotherapy was feasible in such patients with positive PD-L1 expression and TP53 mutation.


Subject(s)
Antibodies, Monoclonal, Humanized , Sarcoma , Vena Cava, Inferior , Humans , Female , Middle Aged , Vena Cava, Inferior/pathology , Sarcoma/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Vascular Neoplasms/drug therapy , Vascular Neoplasms/pathology , Vascular Neoplasms/diagnosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology
16.
Chem Biol Interact ; 396: 111061, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38763347

ABSTRACT

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Nerve Agents , Oximes , Humans , Oximes/pharmacology , Oximes/chemistry , Kinetics , Nerve Agents/chemistry , Nerve Agents/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Molecular Dynamics Simulation , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
17.
Nanotechnology ; 35(33)2024 May 28.
Article in English | MEDLINE | ID: mdl-38729124

ABSTRACT

Li metal batteries with polymer electrolyte are of great interest for next-generation batteries for high safety and high energy density. However, uneven deposition on the lithium metal surface can greatly affect battery life. Therefore, surface modification on the Li metal become necessary to achieve good performance. Herein, an artificial solid electrolyte interface (SEI) modified lithium metal anode is prepared using cation-polymerization process, as triggered by PF5generated from CsPF6. As a result, the polarization voltage of Li||Li symmetric battery assembled with artificial SEI-modified Li metal anode was stable with a small over-potential of 25 mV after 3000 h at current density of 1.5 mA cm-2. Electrochemical performance of Li||NCM 622 (LiNi0.6Co0.2Mn0.2O2) full cell with soft-matter polymer electrolyte is significantly improved than bare Li-metal, the capacity retention is 75% after 120 cycles with N/P = 3:1 at a cut-off voltage of 4.3 V. Our work has shed lights on the commercialization of Li metal battery with polymer electrolyte.

18.
Cancer Control ; 31: 10732748241257142, 2024.
Article in English | MEDLINE | ID: mdl-38769028

ABSTRACT

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Subject(s)
Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , RNA, Circular , RNA-Binding Proteins , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , RNA, Circular/genetics , Gene Expression Regulation, Neoplastic , Male , Cell Proliferation/genetics , Cell Line, Tumor , Female , Mice , Animals , Cell Movement/genetics , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
19.
Photodiagnosis Photodyn Ther ; 46: 104105, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38677498

ABSTRACT

Cervical cancer is the most common gynaecological tumor. The development of a sensor for the ultrasensitive detection of cervical cancer is significant in guaranteeing its prognosis. Herein, we proposed a novel surface-enhanced Raman scattering (SERS) analysis platform using a frequency shifts-based sensing model for rapid and ultrasensitive microRNA (miRNA) assay. During the analysis process, miR-21 can be captured by the single-stranded DNA (ssDNA) modified on the platform which is complementary pairing with miR-21. The connection of miR-21 can lead to the variation of the molecular weight and result in the deformation extent of the Raman report molecule 6Thioguanine (6TG); thus, the peak at 1301 cm-1 due to the ring C-N stretches of 6TG shifts to lower frequency. The detection limit (LOD) of the proposed SERS analysis platform is as low as 8.32 aM. Moreover, the platform also has excellent specificity and repeatability, with the relative standard deviation (RSD) value of 6.53 %. Serum samples of cervical cancer patients and healthy subjects were analyzed via the platform and the accuracy of the detection results was verified by qRT-PCR, revealing that SERS results and qRT-PCR results have high homogeneity. Thus, the platform can serve as a potential tool for clinical diagnosis of cervical cancer.


Subject(s)
Limit of Detection , MicroRNAs , Spectrum Analysis, Raman , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/blood , Uterine Cervical Neoplasms/diagnosis , Spectrum Analysis, Raman/methods , MicroRNAs/blood , Sensitivity and Specificity , DNA, Single-Stranded/blood , Reproducibility of Results , Metal Nanoparticles/chemistry
20.
Water Sci Technol ; 89(7): 1682-1700, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619897

ABSTRACT

In this research, ascorbic acid (AA) was used to enhance Fe(II)/Fe(III)-activated permonosulfate (PMS) systems for the degradation of fluoranthene (FLT). AA enhanced the production of ROS in both PMS/Fe(II) and PMS/Fe(III) systems through chelation and reduction and thus improved the degradation performance of FLT. The optimal molar ratio in PMS/Fe(II)/AA/FLT and PMS/Fe(III)/AA/FLT processes were 2/2/4/1 and 5/10/5/1, respectively. In addition, the experimental results on the effect of FLT degradation under different groundwater matrixes indicated that PMS/Fe(III)/AA system was more adaptable to different water quality conditions than the PMS/Fe(II)/AA system. SO4·- was the major reactive oxygen species (ROS) responsible for FLT removal through the probe and scavenging tests in both systems. Furthermore, the degradation intermediates of FLT were analyzed using gas chromatograph-mass spectrometry (GC-MS), and the probable degradation pathways of FLT degradation were proposed. In addition, the removal of FLT was also tested in actual groundwater and the results showed that by increasing the dose and pre-adjusting the solution pH, 88.8 and 100% of the FLT was removed for PMS/Fe(II)/AA and PMS/Fe(III)/AA systems. The above experimental results demonstrated that PMS/Fe(II)/AA and PMS/Fe(III)/AA processes have a great perspective in practice for the rehabilitation of FLT-polluted groundwater.


Subject(s)
Ferric Compounds , Fluorenes , Water Pollutants, Chemical , Reactive Oxygen Species , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Ferrous Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...