Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters











Publication year range
1.
IEEE Trans Biomed Eng ; PP2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361465

ABSTRACT

OBJECTIVE: A robotic fast dual-arm patch clamp system with controllable mechanical stimulation is proposed in this paper for mechanosensitive excitability research of neurons in brain slice. METHODS: First, a kinematic model of a dual-arm patch clamp system combined with Monte Carlo method is developed to calculate the workspaces of recording micropipette and stimulation micropipette, and optimize the length of end effector for reducing collision incidences during operation. Then, a quantitative stimulation method to cells using one micropipette is developed based on pressing depth control. Finally, a fast robotic dual-arm patch clamp operation process is proposed based on a three-stage motion control of dual micropipettes to approach target cells and form whole-cell recording with quantitative mechanical stimulation. RESULTS: Experimental results on 50 pyramidal neurons in the primary visual cortex of mouse brain slices demonstrate that this system achieves a threefold throughput with a 37% improvement in the success rate of the contact process and a 42% improvement in the success rate of whole-cell recording in comparison to manual operation. With these advantages, a mechanical stimulation-regulated increase in neuron excitability is observed in primary visual cortex. The experimental results also show that the sodium ion current may be more sensitive to mechanical stimulation than potassium ion current. CONCLUSION: Our system significantly improves the efficiency of mechanical stimulation induced excitability research of neurons in brain slices. SIGNIFICANCE: Our methods have the potential to investigate pathological and pathogenic mechanisms of mechanosensitive ion channel dysfunction-induced diseases in the future.

2.
Magn Reson Imaging ; 114: 110234, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39288886

ABSTRACT

PURPOSE: This study aimed to assess changes in white matter microstructure among patients undergoing obstructive sleep apnea hypopnea syndrome (OSAHS) complicated by cognitive impairment through neurite orientation dispersion and density imaging (NODDI), and evaluate the relationship to cognitive impairment as well as the diagnostic performance in early intervention. METHODS: Totally 23 OSAHS patients, 43 OSAHS patients complicated by cognitive impairment, and 15 healthy controls were enrolled in OSA, OSACI and HC groups of this work. NODDI toolbox and FMRIB's Software Library (FSL) were used to calculate neurite density index (NDI), Fractional anisotropy (FA), volume fraction of isotropic water molecules (Viso), and orientation dispersion index (ODI). Tract-based spatial statistics (TBSS) were carried out to examine the above metrics with one-way ANOVA. This study explored the correlations of the above metrics with mini-mental state examination (MMSE), and montreal cognitive assessment (MoCA) scores. Furthermore, receiver operating characteristic (ROC) curves were plotted. Meanwhile, area under curve (AUC) values were calculated to evaluate the diagnostic performance of the above metrics. RESULTS: NDI, ODI, Viso, and FA were significantly different among different brain white matter regions, among which, difference in NDI showed the greatest statistical significance. In comparison with HC group, OSA group had reduced NDI and ODI, whereas elevated Viso levels. Conversely, compared to the OSA group, the OSACI group displayed a slight increase in NDI and ODI values, which remained lower than HC group, viso values continued to rise. Post-hoc analysis highlighted significant differences in these metrics, except for FA, which showed no notable changes or correlations with neuropsychological tests. ROC analysis confirmed the diagnostic efficacy of NDI, ODI, and Viso with AUCs of 0.6908, 0.6626, and 0.6363, respectively, whereas FA's AUC of 0.5042, indicating insufficient diagnostic efficacy. CONCLUSIONS: This study confirmed that NODDI effectively reveals microstructural changes in white matter of OSAHS patients with cognitive impairment, providing neuroimaging evidence for early clinical diagnosis and intervention.

3.
Neurosci Lett ; 842: 137956, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233045

ABSTRACT

Eye movement dysfunction is one of the non-motor symptoms of Parkinson's disease (PD). An accurate analysis method for eye movement is an effective way to gain a deeper understanding of the nervous system function of PD patients. However, currently, there are only a few assistive methods available to help physicians conveniently and consistently assess patients suspected of having PD. To solve this problem, we proposed a novel visual behavioral analysis method using eye tracking to evaluate eye movement dysfunction in PD patients automatically. This method first provided a physician task simulation to induce PD-related eye movements in Virtual Reality (VR). Subsequently, we extracted eye movement features from recorded eye videos and applied a machine learning algorithm to establish a PD diagnostic model. Then, we collected eye movement data from 66 participants (including 22 healthy controls and 44 PD patients) in a VR environment for training and testing during visual tasks. Finally, on this relatively small dataset, the results reveal that the Support Vector Machine (SVM) algorithm has better classification potential.

4.
Chem Soc Rev ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253782

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) have garnered significant attention in the realm of large-scale and sustainable energy storage, primarily owing to their high safety, low cost, and eco-friendliness. Aqueous electrolytes, serving as an indispensable constituent, exert a direct influence on the electrochemical performance and longevity of AZIBs. Nonetheless, conventional aqueous electrolytes often encounter formidable challenges in AZIB applications, such as the limited electrochemical stability window and the zinc dendrite growth. In response to these hurdles, a series of advanced aqueous electrolytes have been proposed, such as "water-in-salt" electrolytes, aqueous eutectic electrolytes, molecular crowding electrolytes, and hydrogel electrolytes. This comprehensive review commences by presenting an in-depth overview of the fundamental compositions, principles, and distinctive characteristics of various advanced aqueous electrolytes for AZIBs. Subsequently, we systematically scrutinizes the recent research progress achieved with these advanced aqueous electrolytes. Furthermore, we summarizes the challenges and bottlenecks associated with these advanced aqueous electrolytes, along with offering recommendations. Based on the optimization of advanced aqueous electrolytes, this review outlines future directions and potential strategies for the development of high-performance AZIBs. This review is anticipated to provide valuable insights into the development of advanced electrolyte systems for the next generation of stable and sustainable multi-valent secondary batteries.

5.
Anal Methods ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253965

ABSTRACT

A new method is introduced for the swift and precise detection of soil pollution and its effects on crops. Soil quality is essential for human well-being, with heavy metal pollution presenting considerable risks to both the ecological environment and human health. In crops, heavy metal contamination primarily occurs through mediums such as soil and water sources. This study introduces a system combining Laser-Induced Breakdown Spectroscopy (LIBS) with machine learning (ML) to analyze garlic contaminated by soil and the soil used for its cultivation. The simulation conducted in this study focuses on the impact of heavy metal-contaminated soil on garlic. Detection results indicate a significant influence of soil on garlic, resulting in heavy metal accumulation. Further analysis shows that metals from contaminated soil accumulate differently in various garlic plant parts, as per spectral data, underscoring the need for targeted detection methods to assess crop contamination. Conducting LIBS analysis on various soil samples enables the classification of different soil types. This indicates that tracing the origin of contaminated garlic through its residual soil is feasible. These findings imply the feasibility of tracing contaminated garlic's origin through its residual soil.

6.
J Infect ; 89(4): 106254, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39182653

ABSTRACT

OBJECTIVES: Using a sporadic case of listeriosis suspected to have been caused by consuming a pre-packaged cold-chain ready-to-eat (RTE) food in Beijing, China in 2021 as an exemplar, this study demonstrated the importance of thoroughly investigating the source of listeriosis up to the production point for mitigating infection risk during routine monitoring of Listeria in food facilities and national surveillance program using whole-genome sequencing (WGS). METHODS: Epidemiological, laboratory, traceback, and plant investigations were used to identify the source of infection. RESULTS: WGS showed the isolate from the patient was genetically indistinguishable from that of the implicated food. During a plant investigation, L. monocytogenes was detected in 26% (9/35) of the environmental samples and one of two raw material samples, confirming the source. CONCLUSION: To our knowledge, this is the first investigation in China linking a case of L. monocytogenes infection to a suspected food and its production environment. This report highlights the risk of L. monocytogenes contamination of RTE food and demonstrates the role of food safety risk monitoring in identifying potential sources of infection. Reinforcing control programs in RTE processing plants, intensified surveillance of microorganisms in food products and targeted health education is required to mitigate the infection risk.


Subject(s)
Food Microbiology , Listeria monocytogenes , Listeriosis , Humans , Listeriosis/epidemiology , Listeriosis/microbiology , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/classification , Beijing/epidemiology , Fast Foods/microbiology , Whole Genome Sequencing , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology , Male , China/epidemiology , Food Contamination/analysis , Female
7.
China CDC Wkly ; 6(18): 385-389, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38737481

ABSTRACT

What is already known on this topic?: Foodborne diseases present a substantial global health risk. Traditional diagnostic methods have constraints, but advancements in molecular techniques, like quantitative polymerase chain reaction (qPCR), provide a hopeful solution. What is added by this report?: We examined 1,011 stool samples from individuals suspected of foodborne illnesses. Our analysis indicated a significant presence of Clostridium perfringens, Salmonella enterica, enterotoxigenic Escherichia coli (ETEC), and adenovirus. Notably, co-infections were identified in 71.22% of the samples. What are the implications for public health practice?: The data emphasize a notable prevalence of co-infections, highlighting the complexity of foodborne illnesses. This study underscores the significance of utilizing contemporary diagnostic methods in densely populated urban areas such as Beijing Municipality.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124526, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38810434

ABSTRACT

Petroleum hydrocarbon (PHC) contamination in soils is considered one of the most serious problems currently, of which the detection and identification is a fairly significant but challenging work. Conventional methods to do such work usually need complex sample pretreatment, consume much time and fail to do the in-situ detection. This paper set out to create a novel systematic methodology to realize the goals accurately and efficiently. Based on laser-induced breakdown spectroscopy (LIBS) and self-improved machine learning methods, the innovative methodology only uses extremely simple devices to do the real-time in situ detection and identification work and even realize the quantitative analysis of pollution level accurately. In the study, clean soils mixed with petroleum were served as polluted samples, clean soils to be the blank group for comparison. Based on the elemental information from the spectra obtained by LIBS, machine learning methods were improved and helped optimized the algorithm to identify the PHC polluted soil samples for the first time. Furthermore, a novel model was designed to perform the quantitative analysis of the concentration of PHC pollution in soils, which can be applied to detect the degree of PHC contamination in soils accurately. Finally, the harmful volatile component of the PHC polluted soils was also successfully and identified despite its extremely minimal content in the air. The newly-designed methodology is novel and efficient, which has extensive application prospect in the real-time in situ detection of petroleum hydrocarbon pollution.

9.
J Am Chem Soc ; 146(10): 7018-7028, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38412508

ABSTRACT

Aqueous rechargeable magnesium batteries hold immense potential for intrinsically safe, cost-effective, and sustainable energy storage. However, their viability is constrained by a narrow voltage range and suboptimal compatibility between the electrolyte and electrodes. Herein, we introduce an innovative ternary deep eutectic Mg-ion electrolyte composed of MgCl2·6H2O, acetamide, and urea in a precisely balanced 1:1:7 molar ratio. This formulation was optimized by leveraging competitive solvation effects between Mg2+ ions and two organic components. The full batteries based on this ternary eutectic electrolyte, Mn-doped sodium vanadate (Mn-NVO) anode, and copper hexacyanoferrate cathode exhibited an elevated voltage plateau and high rate capability and showcased stable cycling performance. Ex-situ characterizations unveiled the Mg2+ storage mechanism of Mn-NVO involving initial extraction of Na+ followed by subsequent Mg2+ intercalation/deintercalation. Detailed spectroscopic analyses illuminated the formation of a pivotal solid-electrolyte interphase on the anode surface. Moreover, the solid-electrolyte interphase demonstrated a dynamic adsorption/desorption behavior, referred to as the "breathing effect", which substantially mitigated undesired dissolution and side reactions of electrode materials. These findings underscore the crucial role of rational electrolyte design in fostering the development of a favorable solid-electrolyte interphase that can significantly enhance compatibility between electrode materials and electrolytes, thus propelling advancements in aqueous multivalent-ion batteries.

10.
J Am Chem Soc ; 146(5): 3293-3302, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277694

ABSTRACT

Aqueous redox flow batteries (ARFBs) hold great potential for large-scale energy storage. Recently, research on aqueous flow batteries has shifted toward water-soluble organic molecules with redox capabilities to reduce the use of mineral resources. The chemical and electrochemical stabilities of organic compounds are heavily influenced by their functional groups and reaction sites. In this study, we present a low-cost synthesis of the O-alkyl-carboxylate-functionalized derivatives of 2,3-dihydroxyphenazine, namely, phenazine-(2,3-diyl) dioxy dibutyric acid (DBEP) and phenazine-(2,3-diyl)dioxy diacetic acid (DAEP), which serve as negolytes and exhibit good reversibility and high redox kinetics. The evidence is provided to clarify the capacity degradation mechanisms of DAEP and DBEP by a series of comprehensive characterizations. Similar to anthraquinones functionalized with alkyl chains, the main degradation mechanism of DAEP modified with acetic acid is due to side chain loss. Longer side chains are more stable and can withstand long-term electrochemical reactions. DBEP modified with butyric acid exhibits superior chemical and electrochemical stability. Our results demonstrate that rational molecular design and suitable membranes, such as the alkaline ARFBs based on DBEP negolyte, potassium ferrocyanide (K4Fe(CN)6) posolyte, and custom sulfonated poly(ether ether ketone) membrane, can deliver a high open-circuit voltage of 1.17 V and high capacity retention of 99.997% per cycle for over 1000 cycles at 50 mA cm-2. This study highlights the importance of not only considering the modification position of the molecules but also focusing on the influence of various side chains on the redox core's stability toward sustainable grid-scale energy storage applications.

11.
Phys Chem Chem Phys ; 25(48): 33130-33140, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38047441

ABSTRACT

In recent years, α-In2Se3 has attracted great attention in miniaturizing nonvolatile random memory devices because of its room temperature ferroelectricity and atomic thickness. In this work, we construct two-dimensional (2D) van der Waals (vdW) heterostructures α-In2Se3/MoS2 with different ferroelectric polarization and design a 2D graphene (Gr)/In2Se3/MoS2/Gr ferroelectric tunnel junction (FTJ) with the symmetric electrodes. Our calculations show that the band alignment of the heterostructures can be changed from type-I to type-II accompanied by the reversal of the ferroelectric polarization of In2Se3. Furthermore, the ferroelectricity persists in Gr/In2Se3/MoS2/Gr vdW FTJs, and the presence of dielectric layer MoS2 in the FTJs enables the effective modulation of the tunneling barrier by altering the ferroelectric polarization of α-In2Se3, which results in two distinct conducting states denoted as "ON" and "OFF" with a large tunneling electroresistance (TER) ratio exceeding 105%. These findings suggest the importance of ferroelectric vdW heterostructures in the design of FTJs and propose a promising route for applying the 2D ferroelectric/semiconductor heterostructures with out-of-plane polarization in high-density ferroelectric memory devices.

12.
Phys Chem Chem Phys ; 25(37): 25177-25190, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37712428

ABSTRACT

With the explosion of data-centric applications, new in-memory computing technologies, based on nonvolatile memory devices, have become competitive due to their merged logic-memory functionalities. Herein, employing first-principles quantum transport simulation, we theoretically investigate for the first time the electronic and contact properties of two types of monolayer (ML)-MoS2 ferroelectric field-effect transistors (FeFETs) integrated with ferroelectric BiAlO3(0001) (BAO(0001)) polar surfaces. Our study finds that the interfacial properties of the investigated partial FeFET devices are highly tunable by switching the electric polarization of the ferroelectric BAO(0001) dielectric. Specifically, the transition from quasi-Ohmic to the Schottky contact, as well as opposite contact polarity of respective n-type and p-type Schottky contact under two polarization states can be obtained, suggesting their superior performance metrics in terms of nonvolatile information storage. In addition, due to the feature of (quasi-)Ohmic contact in some polarization states, the explored FeFET devices, even when operating in the regular field-effect transistor (FET) mode, can be extremely significant in realizing a desirable low threshold voltage and interfacial contact resistance. In conjunction with the formed van der Waals (vdW) interfaces in ML-MoS2/ferroelectric systems with an interlayer, the proposed FeFETs are expected to provide excellent device performance with regard to cycling endurance and memory density.

13.
Sensors (Basel) ; 23(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37430885

ABSTRACT

Intracellular pressure, a key physical parameter of the intracellular environment, has been found to regulate multiple cell physiological activities and impact cell micromanipulation results. The intracellular pressure may reveal the mechanism of these cells' physiological activities or improve the micro-manipulation accuracy for cells. The involvement of specialized and expensive devices and the significant damage to cell viability that the current intracellular pressure measurement methods cause significantly limit their wide applications. This paper proposes a robotic intracellular pressure measurement method using a traditional micropipette electrode system setup. First, the measured resistance of the micropipette inside the culture medium is modeled to analyze its variation trend when the pressure inside the micropipette increases. Then, the concentration of KCl solution filled inside the micropipette electrode that is suitable for intracellular pressure measurement is determined according to the tested electrode resistance-pressure relationship; 1 mol/L KCl solution is our final choice. Further, the measurement resistance of the micropipette electrode inside the cell is modeled to measure the intracellular pressure through the difference in key pressure before and after the release of the intracellular pressure. Based on the above work, a robotic measurement procedure of the intracellular pressure is established based on a traditional micropipette electrode system. The experimental results on porcine oocytes demonstrate that the proposed method can operate on cells at an average speed of 20~40 cells/day with measurement efficiency comparable to the related work. The average repeated error of the relationship between the measured electrode resistance and the pressure inside the micropipette electrode is less than 5%, and no observable intracellular pressure leakage was found during the measurement process, both guaranteeing the measurement accuracy of intracellular pressure. The measured results of the porcine oocytes are in accordance with those reported in related work. Moreover, a 90% survival rate of operated oocytes was obtained after measurement, proving limited damage to cell viability. Our method does not rely on expensive instruments and is conducive to promotion in daily laboratories.


Subject(s)
Robotic Surgical Procedures , Animals , Swine , Culture Media , Cell Survival , Electrodes , Laboratories
14.
Opt Express ; 31(12): 20545-20558, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381447

ABSTRACT

The rapid detection and identification of the electronic waste (e-waste) containing rare earth (RE) elements is of great significance for the recycling of RE elements. However, the analysis of these materials is extremely challenging due to extreme similarities in appearance or chemical composition. In this research, a new system based on laser induced breakdown spectroscopy (LIBS) and machine learning algorithms is developed for identifying and classifying e-waste of rare-earth phosphors (REPs). Three different kinds of phosphors are selected and the spectra is monitored using this new developed system. The analysis of phosphor spectra shows that there are Gd, Yd, and Y RE element spectra in the phosphor. The results also verify that LIBS could be used to detect RE elements. An unsupervised learning method, principal component analysis (PCA), is used to distinguish the three phosphors and training data set is stored for further identification. Additionally, a supervised learning method, backpropagation artificial neural network (BP-ANN) algorithm is used to establish a neural network model to identify phosphors. The result show that the final phosphor recognition rate reaches 99.9%. The innovative system based on LIBS and machine learning (ML) has the potential to improve rapid in situ detection of RE elements for the classification of e-waste.

15.
Stem Cell Res ; 69: 103087, 2023 06.
Article in English | MEDLINE | ID: mdl-37028179

ABSTRACT

Type 2 diabetes mellitus (T2DM) is common in China, and its aetiology and pathogenesis are still unclear. We reprogrammed pEP4EO2SEN2K and pEP4EO2SET2K, pCEP4-M2L was electrotransfected in T2DM patients with pEP4EO2SEN2K, and pCEP4-M2L was electrotransfected in T2DM patients expressing the OCT4, SOX2, NANOG, LIN28, c-MYC, KLF4, and SV40LT transcription factors to obtain induced pluripotent stem cells (iPSCs). The obtained iPSCs have been verified to have pluripotency, normal karyotype and differentiation potential; therefore, these cells can be used in the study of disease pathophysiology and drug development to create new therapeutic targets for T2DM and associated central nervous system damage.


Subject(s)
Diabetes Mellitus, Type 2 , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Diabetes Mellitus, Type 2/metabolism , Cells, Cultured , Cell Differentiation , Cellular Reprogramming
16.
Plants (Basel) ; 12(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36987047

ABSTRACT

Pyrethrum (Tanacetum cinerariifolium) cultivation in Australia, which accounts for the majority of global production of natural insecticidal pyrethrins, is affected by a persistent yield decline which in part is caused by a complex of pathogens. Globisporangium and Pythium species were isolated from crown and roots of pyrethrum plants showing stunting and brown discoloration of crown tissue, and from soil adjacent to diseased plants from yield-decline-affected sites in Tasmania and Victoria, Australia. Ten known Globisporangium species (Globisporangium attrantheridium, G. erinaceum, G. intermedium, G. irregulare, G. macrosporum, G. recalcitrans, G. rostratifingens, G. sylvaticum, G. terrestris and G. ultimum var. ultimum), two new Globisporangium species (Globisporangium capense sp. nov. and Globisporangium commune sp. nov.) and three Pythium species (Pythium diclinum/lutarium, P. tracheiphilum and P. vanterpoolii) were identified through morphological studies and multigene phylogenetic analyses using ITS and Cox1 sequences. Globisporangium ultimum var. ultimum, G. sylvaticum, G. commune sp. nov. and G. irregulare were most abundant. Globisporangium attrantheridium, G. macrosporum and G. terrestris were reported for the first time in Australia. Seven Globisporangium species were pathogenic on both pyrethrum seeds (in vitro assays) and seedlings (glasshouse bioassays), while two Globisporangium species and three Pythium species only caused significant symptoms on pyrethrum seeds. Globisporangium irregulare and G. ultimum var. ultimum were the most aggressive species, causing pyrethrum seed rot, seedling damping-off and significant plant biomass reduction. This is the first report of Globisporangium and Pythium species causing disease in pyrethrum globally and suggests that oomycete species in the family Pythiaceae may have an important role in the yield decline of pyrethrum in Australia.

17.
Chem Rev ; 123(5): 2349-2419, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36512650

ABSTRACT

Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.


Subject(s)
Materials Science , Synthetic Biology
18.
Virol J ; 19(1): 226, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36578037

ABSTRACT

BACKGROUND: Porcine hemagglutinating encephalomyelitis virus (PHEV), a member of the genus Betacoronavirus, is the causative agent of neurological disease in pigs. No effective therapeutics are currently available for PHEV infection. Resveratrol has been shown to exert neuroprotective and antiviral effects. Here resveratrol was investigated for its ability to inhibit PHEV replication in nerve cells and central nervous system tissues. METHODS: Anti-PHEV effect of resveratrol was evaluated using an in vitro cell-based PHEV infection model and employing a mouse PHEV infection model. The collected cells or tissues were used for quantitative PCR analysis, western blot analysis, or indirect immunofluorescence assay. The supernatants were collected to quantify viral loads by TCID50 assay in vitro. EC50 and CC50 were determined by dose-response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral versus cytotoxic activity. RESULTS: Our results showed that resveratrol treatment reduced PHEV titer in a dose-dependent manner, with a 50% inhibition concentration of 6.24 µM. A reduction of > 70% of viral protein expression and mRNA copy number and a 19-fold reduction of virus titer were achieved when infected cells were treated with 10 µM resveratrol in a pre-treatment assay. Quantitative PCR analysis and TCID50 assay results revealed that the addition of 10 µM resveratrol to cells after adsorption of PHEV significantly reduced 56% PHEV mRNA copy number and eightfold virus titer. 10 µM resveratrol treatment reduced 46% PHEV mRNA copy number and fourfold virus titer in virus inactivation assay. Moreover, the in vivo data obtained in this work also demonstrated that resveratrol inhibited PHEV replication, and anti-PHEV activities of resveratrol treatment via intranasal installation displayed better than oral gavage. CONCLUSION: These results indicated that resveratrol exerted antiviral effects under various drug treatment and virus infection conditions in vitro and holds promise as a treatment for PHEV infection in vivo.


Subject(s)
Betacoronavirus 1 , Mice , Swine , Animals , Resveratrol/pharmacology , Resveratrol/metabolism , Betacoronavirus 1/genetics , Betacoronavirus 1/metabolism , Neurons , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Virus Replication
19.
mBio ; 13(6): e0283522, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36472434

ABSTRACT

Campylobacter is the leading bacterial cause of diarrheal illnesses worldwide. Campylobacter jejuni and C. coli are the most common species accounting for campylobacteriosis. Although the proportion of campylobacteriosis caused by C. coli is increasing rapidly in China, the underlying mechanisms of this emergence remain unclear. In this study, we analyzed the whole-genome sequences and associated environments of 1,195 C. coli isolates with human, poultry, or porcine origins from 1980 to 2021. C. coli isolates of human origin were closely related to those from poultry, suggesting that poultry was the main source of C. coli infection in humans. Analysis of antimicrobial resistance determinants indicated that the prevalence of multidrug-resistant C. coli has increased dramatically since the 2010s, coinciding with the shift in abundance from C. jejuni to C. coli in Chinese poultry. Compared with C. jejuni, drug-resistant C. coli strains were better adapted and showed increased proliferation in the poultry production environment, where multiple antimicrobial agents were frequently used. This study provides an empirical basis for the molecular mechanisms that have enabled C. coli to become the dominant Campylobacter species in poultry; we also emphasize the importance of poultry products as sources of campylobacteriosis caused by C. coli in human patients. IMPORTANCE The proportion of campylobacteriosis caused by C. coli is increasing rapidly in China. Coincidentally, the dominant species of Campylobacter occurring in poultry products has shifted from C. jejuni to C. coli. Here, we analyzed the whole-genome sequences of 1,195 C. coli isolates from different origins. The phylogenetic relationship among C. coli isolates suggests that poultry was the main source of C. coli infection in humans. Further analysis indicated that antimicrobial resistance in C. coli strains has increased dramatically since the 2010s, which could facilitate their adaptation in the poultry production environment, where multiple antimicrobial agents are frequently used. Thus, our findings suggest that the judicious use of antimicrobial agents could mitigate the emergence of multidrug-resistant C. coli strains and enhance clinical outcomes by restoring drug sensitivity in Campylobacter.


Subject(s)
Anti-Infective Agents , Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Campylobacter , Gastroenteritis , Intraabdominal Infections , Humans , Animals , Swine , Campylobacter Infections/microbiology , Campylobacter coli/genetics , Anti-Bacterial Agents/pharmacology , Phylogeny , Drug Resistance, Bacterial/genetics , Campylobacter/genetics , Campylobacter jejuni/genetics , Poultry , Genomics , Microbial Sensitivity Tests
20.
Anal Chim Acta ; 1205: 339717, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35414394

ABSTRACT

Herein, we reported a novel strategy for the fabrication of bifunctional metal-organic framework based nanozymes (oxidized UiO-66-NH2@Ce), which displayed excellent oxidase mimic activity as well as fluorescence property. The bifunctional oxidized UiO-66-NH2@Ce possess excellent oxidase activity due to oxidase-like active Ce4+/Ce3+ sites, which makes the nanozymes have strong positive charge, resulting in a stronger affinity for the negatively charged chromogenic substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Utilizing the bifunctional oxidized UiO-66-NH2@Ce, a sensitive fluorometric and colorimetric dual-channel detection strategy for butyrylcholinesterase (BChE) was fabricated for the first time. The oxidized UiO-66-NH2@Ce could catalyze the oxidation of colorless ABTS to green oxABTS, which in turn quench the fluorescence of oxidized UiO-66-NH2@Ce. Butyrylcholinesterase (BChE) can catalyze the hydrolysis of S-butyrylthiocholine iodide (BTCh) to produce thiocholine, which could prevent the oxidation of ABTS, resulting in the fluorescence of oxidized UiO-66-NH2@Ce recovered. Both the colorimetric and fluorometric dual-channel sensing platform displayed a sensitive response to BChE, and the limits of detection (LOD) for BChE could achieve as low as 0.056 and 0.050U/L, respectively. The dual-output assay for BChE detection displayed excellent application prospects.


Subject(s)
Metal-Organic Frameworks , Organometallic Compounds , Butyrylcholinesterase , Oxidoreductases , Phthalic Acids
SELECTION OF CITATIONS
SEARCH DETAIL