Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(14): 3910-3913, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008739

ABSTRACT

In order to reduce the power consumption of digital signal processing (DSP) in a coherent optical communication system, a low complexity equalization scheme in DSP flow of a 400 Gb/s DP-16QAM system has been proposed. This scheme is based on Fermat number transform (FNT), which sequentially performs static equalization (SE) and dynamic equalization (DE) in the transform domain. For different distances, the proposed scheme finds the optimal solution under the condition that transform length and data bit width are mutually restricted under different transmission distances while achieving low complexity and optimal performance. The experimental results show that the adopted transform-domain equalization (TrDE) scheme has much lower computational complexity than the traditional frequency-domain equalization (FDE) and time-domain equalization (TDE) nearly without any performance loss. In the 80, 160, and 240 km scenarios, the number of multiplier is reduced by more than 72%, and the advantage becomes more obvious as the transmission capacity increases.

2.
Opt Express ; 31(26): 44444-44454, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178515

ABSTRACT

An innovative approach has been proposed for adaptive bias control in optical IQ modulators. In contrast to traditional approaches that utilize sine dither, this method employs a linear frequency modulated (LFM) signal as the dither, associated with the fractional Fourier Transform (FrFT) to extract the bias point drift. The LFM signal, after undergoing FrFT, transforms into a compressed signal (CS) with energy concentration in the fractional domain. Utilizing this signal for bias point monitoring, the proposed method demonstrates robust bias control even in the presence of substantial interferences, as substantiated by comprehensive simulations and experimental investigations. Remarkably, in a 20-Gbaud 16QAM signal transmission, the proposed approach achieves stable control of the bias point for over 4 hours, even in the presence of voltage fluctuations, while effectively reducing the dither amplitude by half. Furthermore, it maintains a low bit error rate (BER) below 10-5 even under intentional external interference.

SELECTION OF CITATIONS
SEARCH DETAIL