Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
1.
Cell Biosci ; 14(1): 101, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095802

ABSTRACT

BACKGROUND: COVID-19 can cause cardiac complications and the latter are associated with poor prognosis and increased mortality. SARS-CoV-2 variants differ in their infectivity and pathogenicity, but how they affect cardiomyocytes (CMs) is unclear. METHODS: The effects of SARS-CoV-2 variants were investigated using human induced pluripotent stem cell-derived (hiPSC-) CMs in vitro and Golden Syrian hamsters in vivo. RESULTS: Different variants exhibited distinct tropism, mechanism of viral entry and pathology in the heart. Omicron BA.2 most efficiently infected and injured CMs in vitro and in vivo, and induced expression changes consistent with increased cardiac dysfunction, compared to other variants tested. Bioinformatics and upstream regulator analyses identified transcription factors and network predicted to control the unique transcriptome of Omicron BA.2 infected CMs. Increased infectivity of Omicron BA.2 is attributed to its ability to infect via endocytosis, independently of TMPRSS2, which is absent in CMs. CONCLUSIONS: In this study, we reveal previously unknown differences in how different SARS-CoV-2 variants affect CMs. Omicron BA.2, which is generally thought to cause mild disease, can damage CMs in vitro and in vivo. Our study highlights the need for further investigations to define the pathogenesis of cardiac complications arising from different SARS-CoV-2 variants.

2.
Light Sci Appl ; 13(1): 191, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147738

ABSTRACT

Achieving high-luminescence organic light-emitting devices (OLEDs) with narrowband emission and high color purity is important in various optoelectronic fields. Laser displays exhibit outstanding advantages in next-generation display technologies owing to their ultimate visual experience, but this remains a great challenge. Here, we develop a novel OLED based organic single crystals. By strongly coupling the organic exciton state to an optical microcavity, we obtain polariton electroluminescent (EL) emission from the polariton OLEDs (OPLEDs) with high luminance, narrow-band emission, high color purity, high polarization as well as excellent optically pumped polariton laser. Further, we evaluate the potential for electrically pumped polariton laser through theoretical analysis and provide possible solutions. This work provides a powerful strategy with a material-device combination that paves the way for electrically driven organic single-crystal-based polariton luminescent devices and possibly lasers.

3.
Food Chem ; 460(Pt 2): 140579, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39126740

ABSTRACT

Hyperspectral imaging (HSI) provides opportunity for non-destructively detecting bioactive compounds contents of tea leaves and high detection accuracy require extracting effective features from the complex hyperspectral data. In this paper, we proposed a feature wavelength refinement method called interval band selecting-competitive adaptive reweighted sampling-fusing (IBS-CARS-Fusing) to extract feature wavelengths from visible-near-infrared (VNIR) and short-wave-near-infrared (SWIR) hyperspectral images. Combined with the proposed IBS-CARS-Fusing method, a kernel ridge regression (KRR) model was established to predict the contents of bioactive compounds including chlorophyll a, chlorophyll b, carotenoids, tea polyphenols, and amino acids in Dancong tea. It was revealed that the IBS-CARS-Fusing method can improve Rp2 of KRR model for these bioactive compounds by 4.77%, 4.60%, 6.74%, 15.52%, and 13.10%, respectively, and Rp2 of the model reached high values of 0.9500, 0.9481, 0.8946, 0.8882, and 0.8622. Additionally, a leaf compound mass per area thermal map was used to visualize the spatial distribution of the compounds.


Subject(s)
Camellia sinensis , Hyperspectral Imaging , Plant Leaves , Spectroscopy, Near-Infrared , Tea , Tea/chemistry , Plant Leaves/chemistry , Camellia sinensis/chemistry , Hyperspectral Imaging/methods , Spectroscopy, Near-Infrared/methods , Polyphenols/analysis , Polyphenols/chemistry , Chlorophyll/analysis , Chlorophyll/chemistry , Plant Extracts/chemistry , Carotenoids/analysis , Carotenoids/chemistry , Amino Acids/analysis , Amino Acids/chemistry
4.
Drug Resist Updat ; 77: 101142, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39214042

ABSTRACT

The spread of antibiotic resistance genes (ARGs), particularly those carried on plasmids, poses a major risk to global health. However, the extent and frequency of ARGs transfer in microbial communities among human, animal, and environmental sectors is not well understood due to a lack of effective tracking tools. We have developed a novel fluorescent tracing tool, CRISPR-AMRtracker, to study ARG transfer. It combines CRISPR/Cas9 fluorescence tagging, fluorescence-activated cell sorting, 16S rRNA gene sequencing, and microbial community analysis. CRISPR-AMRtracker integrates a fluorescent tag immediately downstream of ARGs, enabling the tracking of ARG transfer without compromising the host cell's antibiotic susceptibility, fitness, conjugation, and transposition. Notably, our experiments demonstrate that sfGFP-tagged plasmid-borne mcr-1 can transfer across diverse bacterial species within fecal samples. This innovative approach holds the potential to illuminate the dynamics of ARG dissemination and provide valuable insights to shape effective strategies in mitigating the escalating threat of antibiotic resistance.

5.
J Mech Behav Biomed Mater ; 157: 106649, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024732

ABSTRACT

Characterizing the ultimate tensile strength (UTS) of the meniscus is critical in studying knee damage and pathology. This study aims to determine the UTS of the meniscus with an emphasis on its heterogeneity and anisotropy. We performed tensile tests to failure on the menisci of six month old Yorkshire pigs at a low strain rate. Specimens from the anterior, middle and posterior regions of the meniscus were tested in the radial and circumferential directions. Then the UTS was obtained for each specimen and the data were analyzed statistically, leading to a comprehensive view of the variations in porcine meniscal strength. The middle region has the highest average strength in the circumferential (43.3 ± 4.7 MPa) and radial (12.6 ± 2.2 MPa) directions. This is followed by the anterior and posterior regions, which present similar average values (about 34.0MPa) in circumferential direction. The average strength of each region in the radial direction is approximately one-fourth to one-third of the value in the circumferential direction. This study is novel as it is the first work to focus on the experimental methods to investigate the heterogeneity and anisotropy only for porcine meniscus.


Subject(s)
Materials Testing , Meniscus , Tensile Strength , Animals , Anisotropy , Swine , Meniscus/physiology , Stress, Mechanical , Biomechanical Phenomena , Menisci, Tibial/physiology
6.
J Formos Med Assoc ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991898

ABSTRACT

The COVID-19 pandemic remains challenging due to the rapid evolution of the severe acute respiratory syndrome coronavirus 2. This article discusses recent findings on high-risk groups for COVID-19 mortality and morbidity, along with consensus statements from the 2023 Taiwan Association of Gerontology and Geriatrics (TAGG) meeting. It examines evidence on viral mutation mechanisms, emerging variants, and their implications for vaccination strategies. The article underscores advanced age, immunocompromised status, chronic medical conditions, occupational exposure, and socioeconomic disparities as significant risk factors for severe COVID-19 outcomes. TAGG's consensus emphasizes robust vaccination promotion, prioritizing elderly, and immunocompromised groups, individualized multi-dose regimens for immunocompromised patients, and simplified clinical guidelines. Discussions on global and regional recommendations for regular, variant-adapted boosters highlight the non-seasonal nature of COVID-19. Key agreements include escalating domestic preparedness, implementing vigorous risk-based vaccination, and adapting global guidelines to local contexts. Given ongoing viral evolution, proactive adjustment of vaccination policies is essential. Scientific consensus, tailored recommendations, and rapid knowledge dissemination are vital for optimizing COVID-19 protection among vulnerable groups in Taiwan. This article seeks to inform clinical practice and public health policy by summarizing expert-driven vaccination perspectives.

7.
ACS Synth Biol ; 13(6): 1831-1841, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38863339

ABSTRACT

Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or blaKPC genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , CRISPR-Cas Systems , Gram-Negative Bacteria , Plasmids , CRISPR-Cas Systems/genetics , Plasmids/genetics , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gene Transfer Techniques , Gene Editing/methods
8.
Front Cell Neurosci ; 18: 1390557, 2024.
Article in English | MEDLINE | ID: mdl-38832356

ABSTRACT

Insects detect odorants using two large families of heteromeric receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs). Most OR and IR genes encode odorant-binding "tuning" subunits, whereas four (Orco, Ir8a, Ir25a, and Ir76b) encode co-receptor subunits required for receptor function. Olfactory neurons are thought to degenerate in the absence of Orco in ants and bees, and limited data suggest this may happen to some olfactory neurons in Drosophila fruit flies as well. Here, we thoroughly examined the role of co-receptors on olfactory neuron survival in Drosophila. Leveraging knowledge that olfactory neuron classes are defined by the expression of different tuning receptors, we used tuning receptor expression in antennal transcriptomes as a proxy for the survival of distinct olfactory neuron classes. Consistent with olfactory neuron degeneration, expression of many OR-family tuning receptors is decreased in Orco mutants relative to controls, and transcript loss is progressive with age. The effects of Orco are highly receptor-dependent, with expression of some receptor transcripts nearly eliminated and others unaffected. Surprisingly, further studies revealed that olfactory neuron classes with reduced tuning receptor expression generally survive in Orco mutant flies. Furthermore, there is little apoptosis or neuronal loss in the antenna of these flies. We went on to investigate the effects of IR family co-receptor mutants using similar approaches and found that expression of IR tuning receptors is decreased in the absence of Ir8a and Ir25a, but not Ir76b. As in Orco mutants, Ir8a-dependent olfactory neurons mostly endure despite near-absent expression of associated tuning receptors. Finally, we used differential expression analysis to identify other antennal genes whose expression is changed in IR and OR co-receptor mutants. Taken together, our data indicate that odorant co-receptors are necessary for maintaining expression of many tuning receptors at the mRNA level. Further, most Drosophila olfactory neurons persist in OR and IR co-receptor mutants, suggesting that the impact of co-receptors on neuronal survival may vary across insect species.

9.
Viruses ; 16(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932272

ABSTRACT

OBJECTIVE: This study aimed to characterize the changing landscape of circulating SARS-CoV-2 lineages in the local community of Hong Kong throughout 2022. We examined how adjustments to quarantine arrangements influenced the transmission pattern of Omicron variants in a city with relatively rigorous social distancing measures at that time. METHODS: In 2022, a total of 4684 local SARS-CoV-2 genomes were sequenced using the Oxford Nanopore GridION sequencer. SARS-CoV-2 consensus genomes were generated by MAFFT, and the maximum likelihood phylogeny of these genomes was determined using IQ-TREE. The dynamic changes in lineages were depicted in a time tree created by Nextstrain. Statistical analysis was conducted to assess the correlation between changes in the number of lineages and adjustments to quarantine arrangements. RESULTS: By the end of 2022, a total of 83 SARS-CoV-2 lineages were identified in the community. The increase in the number of new lineages was significantly associated with the relaxation of quarantine arrangements (One-way ANOVA, F(5, 47) = 18.233, p < 0.001)). Over time, Omicron BA.5 sub-lineages replaced BA.2.2 and became the predominant Omicron variants in Hong Kong. The influx of new lineages reshaped the dynamics of Omicron variants in the community without fluctuating the death rate and hospitalization rate (One-way ANOVA, F(5, 47) = 2.037, p = 0.091). CONCLUSION: This study revealed that even with an extended mandatory quarantine period for incoming travelers, it may not be feasible to completely prevent the introduction and subsequent community spread of highly contagious Omicron variants. Ongoing molecular surveillance of COVID-19 remains essential to monitor the emergence of new recombinant variants.


Subject(s)
COVID-19 , Genome, Viral , Phylogeny , Quarantine , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , COVID-19/prevention & control , Hong Kong/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , Physical Distancing , Male , Female , Adult , Middle Aged , Adolescent , Child , Aged , Young Adult
10.
PLoS One ; 19(5): e0304246, 2024.
Article in English | MEDLINE | ID: mdl-38758753

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0293870.].

11.
Fish Shellfish Immunol ; 151: 109626, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797334

ABSTRACT

In arthropods, the involvement of Dscam (Down syndrome cell adhesion molecule) in innate immunity has been extensively demonstrated. Its cytoplasmic tail contains multiple conserved functional sites, which indicates its involvement in different intracellular signaling pathways. In this study, we focused on the role of the cytoplasmic tail of Dscam in the Chinese mitten crab (Eriocheir sinensis) immune defense. In the group with cytoplasmic tail knockdown (the site was located on constant exons 37 and 38), 3885 differentially expressed genes (DEGs) were identified. The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. The expression of selected genes were validated using quantitative real-time reverse transcription PCR. We identified key Cell cycle, Janus kinase (JAK)-signal transducer, activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathway genes, the results indicated that the cytoplasmic tail of Dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes.


Subject(s)
Arthropod Proteins , Brachyura , Hemocytes , Immunity, Innate , Animals , Brachyura/genetics , Brachyura/immunology , Hemocytes/immunology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/immunology , Gene Expression Regulation/immunology , Cell Proliferation
12.
Virulence ; 15(1): 2356692, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38797966

ABSTRACT

The increasing antibiotic resistance poses a significant global health challenge, threatening our ability to combat infectious diseases. The phenomenon of collateral sensitivity, whereby resistance to one antibiotic is accompanied by increased sensitivity to another, offers potential avenues for novel therapeutic interventions against infections unresponsive to classical treatments. In this study, we elucidate the emergence of tobramycin (TOB)-resistant small colony variants (SCVs) due to mutations in the hemL gene, which render S. Typhimurium more susceptible to nitrofurantoin (NIT). Mechanistic studies demonstrate that the collateral sensitivity in TOB-resistant S. Typhimurium SCVs primarily stems from disruptions in haem biosynthesis. This leads to dysfunction in the electron transport chain (ETC) and redox imbalance, ultimately inducing lethal accumulation of reactive oxygen species (ROS). Additionally, the upregulation of nfsA/B expressions facilitates the conversion of NIT prodrug into its active form, promoting ROS-mediated bacterial killing and contributing to this collateral sensitivity pattern. Importantly, alternative NIT therapy demonstrates a significant reduction of bacterial load by more than 2.24-log10 cfu/g in the murine thigh infection and colitis models. Our findings corroborate the collateral sensitivity of S. Typhimurium to nitrofurans as a consequence of evolving resistance to aminoglycosides. This provides a promising approach for treating infections due to aminoglycoside-resistant strains.


Subject(s)
Anti-Bacterial Agents , Nitrofurantoin , Salmonella typhimurium , Tobramycin , Nitrofurantoin/pharmacology , Animals , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Tobramycin/pharmacology , Mice , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Mutation , Female , Reactive Oxygen Species/metabolism , Salmonella Infections/microbiology , Salmonella Infections/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
13.
J Biol Chem ; 300(6): 107390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777146

ABSTRACT

SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.


Subject(s)
Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Protein Domains , HEK293 Cells , COVID-19/metabolism , COVID-19/virology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/chemistry , Host-Pathogen Interactions
14.
PeerJ ; 12: e17094, 2024.
Article in English | MEDLINE | ID: mdl-38563003

ABSTRACT

Liver disease is a common and serious threat to human health. The progression of liver diseases is influenced by many physiologic processes, including oxidative stress, inflammation, bile acid metabolism, and autophagy. Various factors lead to the dysfunction of these processes and basing on the different pathogeny, pathology, clinical manifestation, and pathogenesis, liver diseases are grouped into different categories. Specifically, Sirtuin1 (SIRT1), a member of the sirtuin protein family, has been extensively studied in the context of liver injury in recent years and are confirmed the significant role in liver disease. SIRT1 has been found to play a critical role in regulating key processes in liver injury. Further, SIRT1 seems to cause divers outcomes in different types of liver diseases. Recent studies have showed some therapeutic strategies involving modulating SIRT1, which may bring a novel therapeutic target. To elucidate the mechanisms underlying the role of sirtuin1 in liver injury and its potentiality as a therapeutic target, this review outlines the key signaling pathways associated with sirtuin1 and liver injury, and discusses recent advances in therapeutic strategies targeting sirtuin1 in liver diseases.


Subject(s)
Liver Diseases , Sirtuin 1 , Humans , Sirtuin 1/genetics , Liver Diseases/therapy , Inflammation , Signal Transduction
15.
Org Lett ; 26(15): 3235-3240, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38557113

ABSTRACT

Catalytic asymmetric 1,2-allylation of aurone-derived azadienes is very difficult to achieve due to the driving force for aromatization and the greater steric hindrance of 1,2-addition compared with 1,4-addition. By taking advantage of the ability of nitrogen ligated metal complexes, we successfully demonstrated the first example of copper-catalyzed 1,2-allylation of azadienes with allylboronates for the highly enantioselective synthesis of homoallylic amines. Meanwhile, the enantioenriched 1,4-addition products could also be obtained through a subsequent 3,3-sigmatropic rearrangement of the 1,2-addition products. Extensive DFT calculations were carried out to elucidate the origins of high regioselectivity (1,2- vs 1,4-) and enantioselectivity.

16.
Curr Med Sci ; 44(2): 406-418, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619681

ABSTRACT

OBJECTIVE: Uterine corpus endometrial carcinoma (UCEC), a kind of gynecologic malignancy, poses a significant risk to women's health. The precise mechanism underlying the development of UCEC remains elusive. Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein superfamily, was reported to be dysregulated in various illnesses, including malignant tumors. This study aimed to examine the involvement of ZNF554 in the development of UCEC. METHODS: The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay. Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection. CCK-8, wound healing, and Transwell invasion assays were employed to assess cell proliferation, migration, and invasion. Propidium iodide (PI) staining combined with fluorescence-activated cell sorting (FACS) flow cytometer was utilized to detect cell cycle distribution. qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels. Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5 (RBM5). RESULTS: The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines. Decreased expression of ZNF554 was associated with higher tumor stage, decreased overall survival, and reduced disease-free survival in UCEC. ZNF554 overexpression suppressed cell proliferation, migration, and invasion, while also inducing cell cycle arrest. In contrast, a decrease in ZNF554 expression resulted in the opposite effect. Mechanistically, ZNF554 transcriptionally regulated RBM5, leading to the deactivation of the Wingless (WNT)/ß-catenin signaling pathway. Moreover, the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression on ß-catenin and p-glycogen synthase kinase-3ß (p-GSK-3ß). Similarly, the deliberate activation of RBM5 reduced the increase in ß-catenin and p-GSK-3ß caused by the suppression of ZNF554. In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown. Additionally, when RBM5 was overexpressed, it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels. CONCLUSION: ZNF554 functions as a tumor suppressor in UCEC. Furthermore, ZNF554 regulates UCEC progression through the RBM5/WNT/ß-catenin signaling pathway. ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC.


Subject(s)
Endometrial Neoplasms , Wnt Signaling Pathway , Female , Humans , beta Catenin/genetics , beta Catenin/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Endometrial Neoplasms/genetics , Glycogen Synthase Kinase 3 beta/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway/genetics
17.
Talanta ; 272: 125767, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38428128

ABSTRACT

Herein, polysiloxane-based aggregation-induced emission (AIE) polymers and rubbers were prepared which display interesting multi-stimuli responsive fluorescence. TPE-modified polydimethylsiloxanes (PDMS-TPE) as polysiloxane-based AIE polymers were synthesized through Heck reaction of bromo-substituted tetraphenylethene (TPE-Br) and vinyl polysiloxanes. As expected, TPE moiety endows the modified polysiloxane with typical AIE behavior. However, limited by the long polymer chains, the aggregation process of PDMS-TPE shows obvious differences compared with the small molecule TPE-Br. The fluorescence of PDMS-TPE in THF/H2O starts to increase when the H2O fraction (fw) is 70% while TPE-Br is nearly non-luminous until the fw is up to 99%. The fluorescence intensity ratio (I/I0) of PDMS-TPE in the aggregated state and dispersed state is over 1300, greater than that of TPE-Br (I/I0 = 380). More importantly, the exceptional thermal motion of Si-O-Si chains and AIE characteristic of TPE moiety work together, enabling PDMS-TPE to show specific temperature-dependent fluorescence with a wider response range of room temperature to 190°C, which is distinguished from TPE-Br. And such fluorescence responsiveness possess good fatigue-resistance. Furthermore, fluorescent silicone rubbers, r-PDMS-TPE were prepared by using PDMS-TPE as additive of the base gum. They display interesting solvent-controllable fluorescence and higher tensile strength (4.42 MPa) than the control sample without TPE component (1.96 MPa). Notably, a unique stretching-enhanced emission (SEE) phenomenon is observed from these TPE-modified silicone rubbers. When being stretched, the rubbers' fluorescent emission intensity could increase by 143%.

18.
Arch Microbiol ; 206(4): 163, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483624

ABSTRACT

To enhance the quality of tobacco leaves and optimize the smoking experience, diverse strains of functional bacteria and their associated metabolites have been used in tobacco aging. Exogenous cellulase additives are frequently employed to facilitate the degradation of cellulose and other macromolecular matrices and enhance the quality of the tobacco product. However, little is known about how microbial metabolites present in exogenous enzyme additives affect tobacco quality. In this study, crude cellulase solutions, produced by a tobacco-originating bacterium Bacillus subtilis FX-1 were employed on flue-cured tobacco. The incorporation of cellulase solutions resulted in the reduction of cellulose crystallinity in tobacco and the enhancement of the overall sensory quality of tobacco. Notably, tobacco treated with cellulase obtained from laboratory flask fermentation demonstrated superior scent and flavor attributes in comparison to tobacco treated with enzymes derived from industrial bioreactor fermentation. The targeted and untargeted metabolomic analysis revealed the presence of diverse flavor-related precursors and components in the cellulase additives, encompassing sugars, alcohols, amino acids, organic acids, and others. The majority of these metabolites exhibited significantly higher levels in the flask group compared to the bioreactor group, probably contributing to a pronounced enhancement in the sensory quality of tobacco. Our findings suggest that the utilization of metabolic products derived from B. subtilis FX-1 as additives in flue-cured tobacco holds promise as a viable approach for enhancing sensory attributes, establishing a solid theoretical foundation for the potential development of innovative tobacco aging additives.


Subject(s)
Bacillus subtilis , Cellulase , Bacillus subtilis/metabolism , Cellulase/metabolism , Cellulose/metabolism
19.
J Chem Inf Model ; 64(8): 3222-3236, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38498003

ABSTRACT

Liver microsomal stability, a crucial aspect of metabolic stability, significantly impacts practical drug discovery. However, current models for predicting liver microsomal stability are based on limited molecular information from a single species. To address this limitation, we constructed the largest public database of compounds from three common species: human, rat, and mouse. Subsequently, we developed a series of classification models using both traditional descriptor-based and classic graph-based machine learning (ML) algorithms. Remarkably, the best-performing models for the three species achieved Matthews correlation coefficients (MCCs) of 0.616, 0.603, and 0.574, respectively, on the test set. Furthermore, through the construction of consensus models based on these individual models, we have demonstrated their superior predictive performance in comparison with the existing models of the same type. To explore the similarities and differences in the properties of liver microsomal stability among multispecies molecules, we conducted preliminary interpretative explorations using the Shapley additive explanations (SHAP) and atom heatmap approaches for the models and misclassified molecules. Additionally, we further investigated representative structural modifications and substructures that decrease the liver microsomal stability in different species using the matched molecule pair analysis (MMPA) method and substructure extraction techniques. The established prediction models, along with insightful interpretation information regarding liver microsomal stability, will significantly contribute to enhancing the efficiency of exploring practical drugs for development.


Subject(s)
Artificial Intelligence , Microsomes, Liver , Microsomes, Liver/metabolism , Animals , Mice , Rats , Humans , Machine Learning , Drug Discovery/methods , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry
20.
PLoS One ; 19(3): e0293870, 2024.
Article in English | MEDLINE | ID: mdl-38457429

ABSTRACT

With the rapid development of the world city network, the traditional location theory has gradually been disproven, and the advantages of the flow space over the traditional vertical organizational structure are gradually being revealed. Therefore, from corporate branch networks and corporate investment networks, 21 cities in urban agglomerations of Guangdong are taken as case studies for this paper. Furthermore, in this paper, 5 representative types of corporate contact data (catering service, financial service, life service, sports and leisure and accommodation service) are selected, the social network analysis (SNA) method is used to quantitatively analyze the network structure characteristics of urban agglomerations, and a spatial interaction model is constructed to explore the factors influencing. The results indicate that secondary networks have developed in Guangdong. The financial service network is the most complex, followed by the life services, sports and leisure and catering networks. The accommodation service network structure is the simplest. Among all kinds of networks, Guangzhou and Shenzhen have the highest status. The catering and accommodation corporations in Yangjiang in the west have a relatively major external development. Shantou in the east has many branches of various types, while most of the capital exchange in the region is concentrated in Heyuan and Qingyuan in the north. The coefficients of geographical proximity and the urban development level play a significant role in promoting the development of networks. However, administrative capacity limits the attractiveness of origin cities to a certain extent.


Subject(s)
Investments , Urban Renewal , Cities , Geography , China
SELECTION OF CITATIONS
SEARCH DETAIL