Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Synth Biol ; 13(6): 1831-1841, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38863339

ABSTRACT

Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or blaKPC genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , CRISPR-Cas Systems , Gram-Negative Bacteria , Plasmids , CRISPR-Cas Systems/genetics , Plasmids/genetics , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gene Transfer Techniques , Gene Editing/methods
2.
Virulence ; 15(1): 2356692, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38797966

ABSTRACT

The increasing antibiotic resistance poses a significant global health challenge, threatening our ability to combat infectious diseases. The phenomenon of collateral sensitivity, whereby resistance to one antibiotic is accompanied by increased sensitivity to another, offers potential avenues for novel therapeutic interventions against infections unresponsive to classical treatments. In this study, we elucidate the emergence of tobramycin (TOB)-resistant small colony variants (SCVs) due to mutations in the hemL gene, which render S. Typhimurium more susceptible to nitrofurantoin (NIT). Mechanistic studies demonstrate that the collateral sensitivity in TOB-resistant S. Typhimurium SCVs primarily stems from disruptions in haem biosynthesis. This leads to dysfunction in the electron transport chain (ETC) and redox imbalance, ultimately inducing lethal accumulation of reactive oxygen species (ROS). Additionally, the upregulation of nfsA/B expressions facilitates the conversion of NIT prodrug into its active form, promoting ROS-mediated bacterial killing and contributing to this collateral sensitivity pattern. Importantly, alternative NIT therapy demonstrates a significant reduction of bacterial load by more than 2.24-log10 cfu/g in the murine thigh infection and colitis models. Our findings corroborate the collateral sensitivity of S. Typhimurium to nitrofurans as a consequence of evolving resistance to aminoglycosides. This provides a promising approach for treating infections due to aminoglycoside-resistant strains.


Subject(s)
Anti-Bacterial Agents , Nitrofurantoin , Salmonella typhimurium , Tobramycin , Nitrofurantoin/pharmacology , Animals , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Tobramycin/pharmacology , Mice , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Mutation , Female , Reactive Oxygen Species/metabolism , Salmonella Infections/microbiology , Salmonella Infections/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Curr Med Sci ; 44(2): 406-418, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619681

ABSTRACT

OBJECTIVE: Uterine corpus endometrial carcinoma (UCEC), a kind of gynecologic malignancy, poses a significant risk to women's health. The precise mechanism underlying the development of UCEC remains elusive. Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein superfamily, was reported to be dysregulated in various illnesses, including malignant tumors. This study aimed to examine the involvement of ZNF554 in the development of UCEC. METHODS: The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay. Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection. CCK-8, wound healing, and Transwell invasion assays were employed to assess cell proliferation, migration, and invasion. Propidium iodide (PI) staining combined with fluorescence-activated cell sorting (FACS) flow cytometer was utilized to detect cell cycle distribution. qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels. Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5 (RBM5). RESULTS: The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines. Decreased expression of ZNF554 was associated with higher tumor stage, decreased overall survival, and reduced disease-free survival in UCEC. ZNF554 overexpression suppressed cell proliferation, migration, and invasion, while also inducing cell cycle arrest. In contrast, a decrease in ZNF554 expression resulted in the opposite effect. Mechanistically, ZNF554 transcriptionally regulated RBM5, leading to the deactivation of the Wingless (WNT)/ß-catenin signaling pathway. Moreover, the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression on ß-catenin and p-glycogen synthase kinase-3ß (p-GSK-3ß). Similarly, the deliberate activation of RBM5 reduced the increase in ß-catenin and p-GSK-3ß caused by the suppression of ZNF554. In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown. Additionally, when RBM5 was overexpressed, it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels. CONCLUSION: ZNF554 functions as a tumor suppressor in UCEC. Furthermore, ZNF554 regulates UCEC progression through the RBM5/WNT/ß-catenin signaling pathway. ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC.


Subject(s)
Endometrial Neoplasms , Wnt Signaling Pathway , Female , Humans , beta Catenin/genetics , beta Catenin/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Endometrial Neoplasms/genetics , Glycogen Synthase Kinase 3 beta/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway/genetics
4.
Sci Adv ; 9(23): eadg4205, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37294761

ABSTRACT

In the face of the alarming rise in global antimicrobial resistance, only a handful of novel antibiotics have been developed in recent decades, necessitating innovations in therapeutic strategies to fill the void of antibiotic discovery. Here, we established a screening platform mimicking the host milieu to select antibiotic adjuvants and found three catechol-type flavonoids-7,8-dihydroxyflavone, myricetin, and luteolin-prominently potentiating the efficacy of colistin. Further mechanistic analysis demonstrated that these flavonoids are able to disrupt bacterial iron homeostasis through converting ferric iron to ferrous form. The excessive intracellular ferrous iron modulated the membrane charge of bacteria via interfering the two-component system pmrA/pmrB, thereby promoting the colistin binding and subsequent membrane damage. The potentiation of these flavonoids was further confirmed in an in vivo infection model. Collectively, the current study provided three flavonoids as colistin adjuvant to replenish our arsenals for combating bacterial infections and shed the light on the bacterial iron signaling as a promising target for antibacterial therapies.


Subject(s)
Bacterial Proteins , Colistin , Colistin/pharmacology , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria/metabolism , Iron , Homeostasis
5.
mSystems ; 7(5): e0024822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36040022

ABSTRACT

Understanding the fitness costs associated with plasmid carriage is a key to better understanding the mechanisms of plasmid maintenance in bacteria. In the current work, we performed multiple serial passages (63 days, 627.8 generations) to identify the compensatory mechanisms that Salmonella enterica serovar Typhimurium ATCC 14028 utilized to maintain the multidrug-resistant (MDR) IncHI2 plasmid pJXP9 in the presence and absence of antibiotic selection. The plasmid pJXP9 was maintained for hundreds of generations even without drug exposure. Endpoint evolved (the endpoint of evolution) S. Typhimurium bearing evolved plasmids displayed decreased growth lag times and a competitive advantage over ancestral pJXP9 plasmid-carrying ATCC 14028 strains. Genomic and transcriptomic analyses revealed that the fitness costs of carrying pJXP9 were derived from both specific plasmid genes and particularly the MDR regions and conjugation transfer region I and conflicts resulting from chromosome-plasmid gene interactions. Correspondingly, plasmid deletions of these regions could compensate for the fitness cost that was due to the plasmid carriage. The deletion extent and range of large fragments on the evolved plasmids, as well as the trajectory of deletion mutation, were related to the antibiotic treatment conditions. Furthermore, it is also adaptive evolution that chromosomal gene mutations and altered mRNA expression correlated with changed physiological functions of the bacterium, such as decreased flagellar motility, increased oxidative stress, and fumaric acid synthesis but increased Cu resistance in a given niche. Our findings indicated that plasmid maintenance evolves via a plasmid-bacterium adaptative evolutionary process that is a trade-off between vertical and horizontal transmission costs along with associated alterations in host bacterial physiology. IMPORTANCE The current idea that compensatory evolution processes can account for the "plasmid paradox" phenomenon associated with the maintenance of large costly plasmids in host bacteria has attracted much attention. Although many compensatory mutations have been discovered through various plasmid-host bacterial evolution experiments, the basis of the compensatory mechanisms and the nature of the bacteria themselves to address the fitness costs remain unclear. In addition, the genetic backgrounds of plasmids and strains involved in previous research were limited and clinical drug resistance such as the poorly understood compensatory evolution among clinically dominant multidrug-resistant plasmids or clones was rarely considered. The IncHI2 plasmid is widely distributed in Salmonella Typhimurium and plays an important role in the emergence and rapid spread of its multidrug resistance. In this study, the predominant multidrug-resistant IncHI2 plasmid pJXP9 and the standard Salmonella Typhimurium ATCC 14028 bacteria were used for evolution experiments under laboratory conditions. Our findings indicated that plasmid maintenance through experimental evolution of plasmid-host bacteria is a trade-off between increasing plasmid vertical transmission and impairing its horizontal transmission and bacterial physiological phenotypes, in which compensatory mutations and altered chromosomal expression profiles collectively contribute to alleviating plasmid-borne fitness cost. These results provided potential insights into understanding the relationship of coexistence between plasmids encoding antibiotic resistance and their bacterial hosts and provided a clue to the adaptive forces that shaped the evolution of these plasmids within bacteria and to predicting the evolution trajectory of antibiotic resistance.


Subject(s)
Salmonella enterica , Salmonella typhimurium , Salmonella typhimurium/genetics , Serogroup , Plasmids/genetics , Salmonella enterica/genetics , Anti-Bacterial Agents/pharmacology
6.
J Antimicrob Chemother ; 77(1): 74-82, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34613377

ABSTRACT

OBJECTIVES: In this study, we developed an IS26-based CRISPR/Cas9 system as a proof-of-concept study to explore the potential of a re-engineered bacterial translocatable unit (TU) for curing and immunizing against the replication genes and antimicrobial resistance genes. METHODS: A series of pIS26-CRISPR/Cas9 suicide plasmids were constructed, and specific guide RNAs were designed to target the replication gene of IncX4, IncI2 and IncHI2 plasmids, and the antibiotic resistance genes mcr-1, blaKPC-2 and blaNDM-5. Through conjugation and induction, the transposition efficiency and plasmid-curing efficiency in each recipient were tested. In addition, we examined the efficiency of the IS26-CRISPR/Cas9 system of cell immunity against the acquisition of the exogenous resistant plasmids by introducing this system into antimicrobial-susceptible hosts. RESULTS: This study aimed to eliminate the replication genes and antimicrobial resistance genes using pIS26-CRISPR/Cas9. Three plasmids with different replicon types, including IncX4, IncI2 and IncHI2 in three isolates, two pUC19-derived plasmids, pUC19-mcr-1 and pUC19-IS26mcr-1, in two lab strains, and two plasmids bearing blaKPC-2 and blaNDM-5 in two isolates were all successfully eliminated. Moreover, the IS26-based CRISPR/Cas9 system that remained in the plasmid-cured strains could efficiently serve as an immune system against the acquisition of the exogenous resistant plasmids. CONCLUSIONS: The IS26-based CRISPR/Cas9 system can be used to efficiently sensitize clinical Escherichia coli isolates to antibiotics in vitro. The single-guide RNAs targeted resistance genes or replication genes of specific incompatible plasmids that harboured resistance genes, providing a novel means to naturally select bacteria that cannot uptake and disseminate such genes.


Subject(s)
CRISPR-Cas Systems , Escherichia coli Proteins , Escherichia coli , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Plasmids/genetics
7.
Antimicrob Agents Chemother ; 65(10): e0105421, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34339270

ABSTRACT

The global spread of antimicrobial-resistant bacteria has been one of the most severe threats to public health. The emergence of the mcr-1 gene has posed a considerable threat to antimicrobial medication since it deactivates one last-resort antibiotic, colistin. There have been reports regarding the mobilization of the mcr-1 gene facilitated by ISApl1-formed transposon Tn6330 and mediated rapid dispersion among Enterobacteriaceae species. Here, we developed a CRISPR/Cas9 system flanked by ISApl1 in a suicide plasmid capable of exerting sequence-specific curing against the mcr-1-bearing plasmid and killing the strain with chromosome-borne mcr-1. The constructed ISApl1-carried CRISPR/Cas9 system either restored sensitivity to colistin in strains with plasmid-borne mcr-1 or directly eradicated the bacteria harboring chromosome-borne mcr-1 by introducing an exogenous CRISPR/Cas9 targeting the mcr-1 gene. This method is highly efficient in removing the mcr-1 gene from Escherichia coli, thereby resensitizing these strains to colistin. The further results demonstrated that it conferred the recipient bacteria with immunity against the acquisition of the exogenous mcr-1 containing the plasmid. The data from the current study highlighted the potential of the transposon-associated CRISPR/Cas9 system to serve as a therapeutic approach to control the dissemination of mcr-1 resistance among clinical pathogens.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Anti-Bacterial Agents/pharmacology , CRISPR-Cas Systems/genetics , Chromosomes , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Humans , Plasmids/genetics
8.
Transl Vis Sci Technol ; 10(9): 23, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34406340

ABSTRACT

Purpose: This study aimed to quantitative assess the fundus tessellated density (FTD) and associated factors on the basis of fundus photographs using artificial intelligence. Methods: A detailed examination of 3468 individuals was performed. The proposed method for FTD measurements consists of image preprocessing, sample labeling, deep learning segmentation model, and FTD calculation. Fundus tessellation was extracted as region of interest and then the FTD could be obtained by calculating the average exposed choroid area of per unit area of fundus. Besides, univariate and multivariate linear regression analysis have been conducted for the statistical analysis. Results: The mean FTD was 0.14 ± 0.08 (median, 0.13; range, 0-0.39). In multivariate analysis, FTD was significantly (P < 0.001) associated with thinner subfoveal choroidal thickness, longer axial length, larger parapapillary atrophy, older age, male sex and lower body mass index. Correlation analysis suggested that the FTD increased by 33.1% (r = 0.33, P < .001) for each decade of life. Besides, correlation analysis indicated the negative correlation between FTD and spherical equivalent (SE) in the myopia participants (r = -0.25, P < 0.001), and no correlations between FTD and SE in the hypermetropia and emmetropic participants. Conclusions: It is feasible and efficient to extract FTD information from fundus images by artificial intelligence-based imaging processing. FTD can be widely used in population screening as a new quantitative biomarker for the thickness of the subfoveal choroid. The association between FTD with pathological myopia and lower visual acuity warrants further investigation. Translational Relevance: Artificial intelligence can extract valuable clinical biomarkers from fundus images and assist in population screening.


Subject(s)
Artificial Intelligence , Myopia, Degenerative , Aged , Cross-Sectional Studies , Fundus Oculi , Humans , Male , Tomography, Optical Coherence
9.
Sci Total Environ ; 799: 149360, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34365265

ABSTRACT

Tetracycline antibiotics (TCs) are massively produced and consumed in various industries resulting in large quantities of residuals in the environment. In this study, to achieve safe and efficient removal of residual TCs, a Pichia pastoris (P. pastoris) was gained to stably express glycosylated TCs degrading enzyme Tet(X) followed codon and expression parameter optimization of tet(X4). As expected, glycosylated Tet(X) still maintains efficient capacity of degrading TCs. The expressed Tet(X) maintained efficient TCs degrading ability over a pH range of 6.5 - 9.5 and temperature range of 17 - 47 °C. We tested this recombinant protein for its ability to degrade tetracycline in pond water and sewage models of tetracycline removal at starting levels of 10 mg/L substrate. 80.5 ± 3.8% and 26.2 ± 2.6% of tetracycline was degraded within 15 min in the presence of 0.2 µM Tet(X) and 50 µM NADPH, respectively. More importantly, the direct use of a Tet(X) degrading enzymes reduces the risk of gene transmission during degradation. Thus, the Tet(X) degrading enzyme expressed by P. pastoris is an effective and safe method for treating intractable TCs residues.


Subject(s)
Pichia , Tetracyclines , Anti-Bacterial Agents , Pichia/genetics , Saccharomycetales , Water
10.
Sci Total Environ ; 771: 144828, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33545481

ABSTRACT

Overuse of antibiotics in animal husbandry has led to an increase of antibiotic resistance microorganisms as well as antibiotic-resistance genes (ARGs). Duck farming in China is practiced on a large and diverse scale and the overuse of antibiotics in this field is gaining attention recently. We evaluated the diversity of ARGs from five duck farms using a functional metagenomic approach and constructed five libraries. A total of seventy-six resistant determinants were identified, of which sixty-one were gene variants or novel genes. The novel genes contained five ß-lactamase-encoding genes designated as blaDWA1, blaDWA2, blaDWA3, blaDWA4 and blaDWB1, respectively, and two genes conferring resistance to fosfomycin designated as fosA-like1 and fosA-like2. Three of the five ß-lactamase-encoding genes were further identified as extended-spectrum ß-lactamases (ESBL) that can hydrolyze both penicillins and cephalosporins. Besides, two of the five ß-lactamase-encoding genes were associated with mobile genetic elements, indicating a high potential for transfer of the genes to other bacterial hosts. The two novel fosA-like genes were able to increase the MICs of the test Escherichia coli strain from 2 µg/mL to as high as 256 µg/mL(up to 128-fold increase). Our study provides a reference for ARGs prevalence in duck farm wastes and implies that they are an important resistome reservoir, especially for novel ARGs with high spread potential.


Subject(s)
Anti-Bacterial Agents , Ducks , Animals , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Microbial/genetics , Genes, Bacterial , beta-Lactamases/genetics
11.
Vet Microbiol ; 253: 108954, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33373881

ABSTRACT

The recent emergence of plasmid-mediated tigecycline resistance gene tet(X) has challenged the clinical effectiveness of tigecycline as a last-resort treatment option. During 2017-2018, 336 fecal samples from sick ducks, pigs, chickens and geese in Guangdong, China, were screened for tet(X)-positive Acinetobacter baumannii strains. Their activities on tetracyclines were determined by microbiological degradation and mass spectrometry, followed by susceptibility testing, sequence typing, gene transfer, molecular location and genomic DNA sequencing analyses. A total of 10 tet(X)-positive A. baumannii strains were isolated from ducks and chickens, including eight plasmid-borne tet(X5)-positive and two chromosomal tet(X6)-positive isolates. All of them exhibited good degradation activities on tetracyclines by hydroxylation at C11a and were multidrug-resistant to tigecycline, tetracycline, florfenicol, ciprofloxacin and trimethoprim/sulfamethoxazole. Genetically, they belonged to two sequence types (ST355, n = 8; ST1980, n = 2) that were consistent with their pulsotypes, revealing a clonal spread of ST355 A. baumannii. An ISCR2- or IS26-mediated tet(X) transposition structure, homologous to those of clinical A. baumannii strains, was also identified and ISCR2 could transfer tet(X5) into the recipient Acinetobacter baylyi ADP1 at a frequency of (1.8 ± 0.3)×10-6. Therefore, more efforts are needed to evaluate the clinical impact of these tigecycline resistance genes.


Subject(s)
Acinetobacter Infections/veterinary , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Cross Infection/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Tigecycline/pharmacology , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/isolation & purification , Animals , Chickens/microbiology , China/epidemiology , Cross Infection/epidemiology , Cross Infection/microbiology , Ducks/microbiology , Microbial Sensitivity Tests , Plasmids/genetics , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Swine/microbiology , Swine Diseases/epidemiology , Swine Diseases/microbiology , Tetracyclines/pharmacology
12.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32660996

ABSTRACT

The mobile colistin resistance gene mcr-3 has globally disseminated since it was first reported in 2017 in Escherichia coliIn vitro mobilization assays in this study demonstrate the functionality of the composite transposon structure ISKpn40-mcr-3.11-dgkA-ISKpn40 in wild-type and recA-E. coli strains. These transpositions generated 4-bp duplications at the target sites. This is the first report demonstrating the mobility of the mcr-3.11 gene by transposition.


Subject(s)
Colistin , Drug Resistance, Bacterial , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Plasmids/genetics , Transferases (Other Substituted Phosphate Groups)
13.
Front Microbiol ; 11: 564973, 2020.
Article in English | MEDLINE | ID: mdl-33510713

ABSTRACT

OBJECTIVES: The emergence of mobile colistin resistance genes has compromised the efficacy of the last resort antibiotic, colistin, in clinical treatment. The mcr-2 gene was first identified in Belgium in association with the insertion sequence ISEc69. However, the molecular mechanisms of mcr-2 mobilization are not well understood. METHODS: To further explore the mobilization of mcr-2 gene via ISEc69, we constructed a conjugative plasmid that carries an intact composite transposon Tn7052. Transposition assays were performed by conjugation, the transposition sites were characterized by arbitrary primed PCR and DNA sequencing. RESULTS: In this study, we experimentally demonstrated that mcr-2 could be mobilized as a composite transposon Tn7052 and its transposition generated 8-bp AT-rich duplications in the host genome. CONCLUSION: These results indicate that mcr-2 gene could be mobilized by ISEc69, the current investigations provide mechanistic insights in the transposition of mcr-2.

14.
J Obstet Gynaecol Res ; 41(3): 350-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25256675

ABSTRACT

AIM: The aim of this study was to compare the feasibility, reliability, safety and pregnancy outcomes following transabdominal myomectomy (TAM) and laparoscopic myomectomy (LM) at Beijing Obstetrics and Gynecology Hospital. MATERIAL AND METHODS: The study included two parts: between January 2005 and December 2010, data on 157 patients were retrospectively collected; and between January 2011 and January 2013, 111 patients were prospectively collected. All of them had fertility requirements following myomectomy. Patients' demographics, leiomyomas' characteristics, perioperative data regarding surgical complications, relapses, subsequent pregnancy outcomes and obstetric characteristics were collected. RESULTS: The patients' demographics and leiomyoma characteristics were comparable in the TAM and LM groups (P > 0.05). There was no significant difference in the average drop in hemoglobin between the two groups (P = 0.887), while the postoperative ileus duration, postoperative ambulation duration and dose of analgesia were significantly higher in the TAM group (P < 0.001). There was no significant difference in the overall relapse and subsequent cumulative pregnancy rates and obstetric complications between the two groups. The contraception interval after myomectomy was significantly longer (P = 0.038) after TAM, however the cesarean section rate only due to myomectomy history was higher (P = 0.034) after TAM than after LM. Four patients in the LM group were identified as having uterine scar defective repair on the site of the previous myomectomy scar during elective cesarean section, while this was not identified in any patient in the TAM group. CONCLUSION: LM is a feasible treatment for women who have fertility requirements but suffer from leiomyoma. Although LM does not increase the rate of uterine rupture in the subsequent pregnancy, it is advisable for surgeons to limit the use of electrosurgery.


Subject(s)
Cesarean Section , Leiomyoma/surgery , Pregnancy Rate , Uterine Myomectomy/methods , Uterine Neoplasms/surgery , Adult , Cicatrix/complications , Female , Fertility Preservation , Humans , Laparoscopy , Pregnancy , Pregnancy Outcome , Prospective Studies , Retrospective Studies , Uterine Myomectomy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...