Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Breast Cancer Res Treat ; 203(3): 511-521, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37950089

ABSTRACT

PURPOSE: Axillary lymph nodes (LNs) with cortical thickness > 3 mm have a higher likelihood of malignancy. To examine the positive predictive value (PPV) of axillary LN cortical thickness in newly diagnosed breast cancer patients, and nodal, clinical, and tumor characteristics associated with axillary LN metastasis. METHODS: Retrospective review of axillary LN fine needle aspirations (FNAs) performed 1/1/2018-12/31/2019 included 135 axillary FNAs in 134 patients who underwent axillary surgery. Patient demographics, clinical characteristics, histopathology, and imaging features were obtained from medical records. Hypothesis testing was performed to identify predictors of axillary LN metastasis. RESULTS: Cytology was positive in 72/135 (53.3%), negative in 61/135 (45.2%), and non-diagnostic in 2/135 (1.5%). At surgery, histopathology was positive in 84 (62.2%) and negative in 51 (37.8%). LN cortices were thicker in metastatic compared to negative nodes (p < 0.0001). PPV of axillary LNs with cortical thickness ≥ 3 mm, ≥ 3.5 mm, ≥ 4 mm and, ≥ 4.25 mm was 0.62 [95% CI 0.53, 0.70], 0.63 [0.54, 0.72], 0.67 [0.57, 0.76] , and 0.74 [0.64, 0.83], respectively. At multivariable analysis, abnormal hilum (OR = 3.44, p = 0.016) and diffuse cortical thickening (OR = 2.86, p = 0.038) were associated with nodal metastasis. CONCLUSION: In newly diagnosed breast cancer patients, increasing axillary LN cortical thickness, abnormal fatty hilum, and diffuse cortical thickening are associated with nodal metastasis. PPV of axillary LN cortical thickness ≥ 3 mm and ≥ 3.5 mm is similar but increases for cortical thickness ≥ 4 mm. FNA of axillary LNs with cortex < 4 mm may be unnecessary for some patients undergoing sentinel LN biopsy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Predictive Value of Tests , Sensitivity and Specificity , Lymph Nodes/surgery , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Axilla/pathology , Retrospective Studies , Sentinel Lymph Node Biopsy/methods
2.
AJR Am J Roentgenol ; 220(5): 693-704, 2023 05.
Article in English | MEDLINE | ID: mdl-36416399

ABSTRACT

BACKGROUND. Adrenal masses are often indeterminate on single-phase postcontrast CT. Dual-energy CT (DECT) with three-material decomposition algorithms may aid characterization. OBJECTIVE. The purpose of this study was to compare the diagnostic performance of metrics derived from portal venous phase DECT, including virtual noncontrast (VNC) attenuation, fat fraction, iodine density, and relative enhancement ratio, for characterizing adrenal masses. METHODS. This retrospective study included 128 patients (82 women, 46 men; mean age, 64.6 ± 12.7 [SD] years) who between January 2016 and December 2019 underwent portal venous phase abdominopelvic DECT that showed a total of 139 adrenal lesions with an available reference standard based on all imaging, clinical, and pathologic records (87 adenomas, 52 nonadenomas [48 metastases, two adrenal cortical carcinomas, one ganglioneuroma, one hematoma]). Two radiologists placed ROIs to determine the following characteristics of the masses: VNC attenuation, fat fraction, iodine density normalized to portal vein, and for masses with VNC greater than 10 HU, relative enhancement ratio (ratio of portal venous phase attenuation to VNC attenuation). Readers' mean measurements were used for ROC analyses, and clinically optimal thresholds were derived as thresholds yielding the highest sensitivity at 100% specificity. RESULTS. Adenomas and nonadenomas were significantly different (all p < .001) in VNC attenuation (mean ± SD, 18.5 ± 12.9 vs 34.1 ± 8.9 HU), fat fraction (mean ± SD, 24.3% ± 8.2% vs 14.2% ± 5.6%), normalized iodine density (mean ± SD, 0.34 ± 0.15 vs 0.17 ± 0.17), and relative enhancement ratio (mean ± SD, 186% ± 96% vs 58% ± 59%). AUCs for all metrics ranged from 0.81 through 0.91. The metric with highest sensitivity for adenoma at the clinically optimal threshold (i.e., 100% specificity) was fat fraction (threshold, ≥ 23.8%; sensitivity, 59% [95% CI, 48-69%]) followed by VNC attenuation (≤ 15.2 HU; sensitivity, 39% [95% CI, 29-50%]), relative enhancement ratio (≥ 214%; sensitivity, 37% [95% CI, 25-50%]), and normalized iodine density (≥ 0.90; sensitivity, 1% (95% CI, 0-60%]). VNC attenuation at the traditional true noncontrast attenuation threshold of 10 HU or lower had sensitivity of 28% (95% CI, 19-38%) and 100% specificity. Presence of fat fraction 23.8% or greater or relative enhancement ratio 214% or greater yielded sensitivity of 68% (95% CI, 57-77%) with 100% specificity. CONCLUSION. For adrenal lesions evaluated with single-phase DECT, fat fraction had higher sensitivity than VNC attenuation at both the clinically optimal threshold and the traditional threshold of 10 HU or lower. CLINICAL IMPACT. By helping to definitively diagnose adenomas, DECT-derived metrics can help avoid downstream imaging for incidental adrenal lesions.


Subject(s)
Adenoma , Adrenal Cortex Neoplasms , Adrenal Gland Diseases , Adrenal Gland Neoplasms , Adrenocortical Adenoma , Iodine , Male , Humans , Female , Middle Aged , Aged , Tomography, X-Ray Computed/methods , Retrospective Studies , Benchmarking , Sensitivity and Specificity , Adrenocortical Adenoma/diagnostic imaging , Adenoma/diagnostic imaging , Adrenal Gland Neoplasms/diagnostic imaging , Adrenal Gland Neoplasms/secondary
SELECTION OF CITATIONS
SEARCH DETAIL