Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.049
Filter
1.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007638

ABSTRACT

Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.


Subject(s)
Axoneme , Cilia , Zebrafish , Animals , Cilia/metabolism , Cilia/ultrastructure , Zebrafish/metabolism , Mice , Axoneme/metabolism , Axoneme/ultrastructure , Axonemal Dyneins/metabolism , Axonemal Dyneins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Dyneins/metabolism
2.
Mol Cancer ; 23(1): 143, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992675

ABSTRACT

BACKGROUND: Emerging evidence indicates the pivotal involvement of circular RNAs (circRNAs) in cancer initiation and progression. Understanding the functions and underlying mechanisms of circRNAs in tumor development holds promise for uncovering novel diagnostic indicators and therapeutic targets. In this study, our focus was to elucidate the function and regulatory mechanism of hsa-circ-0003764 in hepatocellular carcinoma (HCC). METHODS: A newly discovered hsa-circ-0003764 (circPTPN12) was identified from the circbase database. QRT-PCR analysis was utilized to assess the expression levels of hsa-circ-0003764 in both HCC tissues and cells. We conducted in vitro and in vivo experiments to examine the impact of circPTPN12 on the proliferation and apoptosis of HCC cells. Additionally, RNA-sequencing, RNA immunoprecipitation, biotin-coupled probe pull-down assays, and FISH were employed to confirm and establish the relationship between hsa-circ-0003764, PDLIM2, OTUD6B, P65, and ESRP1. RESULTS: In HCC, the downregulation of circPTPN12 was associated with an unfavorable prognosis. CircPTPN12 exhibited suppressive effects on the proliferation of HCC cells both in vitro and in vivo. Mechanistically, RNA sequencing assays unveiled the NF-κB signaling pathway as a targeted pathway of circPTPN12. Functionally, circPTPN12 was found to interact with the PDZ domain of PDLIM2, facilitating the ubiquitination of P65. Furthermore, circPTPN12 bolstered the assembly of the PDLIM2/OTUD6B complex by promoting the deubiquitination of PDLIM2. ESRP1 was identified to bind to pre-PTPN12, thereby fostering the generation of circPTPN12. CONCLUSIONS: Collectively, our findings indicate the involvement of circPTPN12 in modulating PDLIM2 function, influencing HCC progression. The identified ESRP1/circPTPN12/PDLIM2/NF-κB axis shows promise as a novel therapeutic target in the context of HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , LIM Domain Proteins , Liver Neoplasms , NF-kappa B , RNA, Circular , RNA-Binding Proteins , Signal Transduction , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , RNA, Circular/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , NF-kappa B/metabolism , Mice , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Disease Progression , Apoptosis/genetics , Prognosis , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Male , Female , Mice, Nude
3.
Bioengineering (Basel) ; 11(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927786

ABSTRACT

Collision safety is an essential issue for dual-arm nursing-care robots. However, for coordinating operations, there is no suitable method to synchronously avoid collisions between two arms (self-collision) and collisions between an arm and the environment (environment-collision). Therefore, based on the self-motion characteristics of the dual-arm robot's redundant arms, an improved motion controlling algorithm is proposed. This study introduces several key improvements to existing methods. Firstly, the volume of the robotic arms was modeled using a capsule-enveloping method to more accurately reflect their actual structure. Secondly, the gradient projection method was applied in the kinematic analysis to calculate the shortest distances between the left arm, right arm, and the environment, ensuring effective avoidance of the self-collision and environment-collision. Additionally, distance thresholds were introduced to evaluate collision risks, and a velocity weight was used to control the smooth coordinating arm motion. After that, experiments of coordinating obstacle avoidance showed that when the redundant dual-arm robot is holding an object, the coordinating operation was completed while avoiding self-collision and environment-collision. The collision-avoidance method could provide potential benefits for various scenarios, such as medical robots and rehabilitating robots.

4.
Chem Biol Drug Des ; 103(6): e14558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828741

ABSTRACT

This study aimed to explore the active components and the effect of Hedyotis diffusa (HD) against Alzheimer's disease (AD) via network pharmacology, molecular docking, and experimental evaluations. We conducted a comprehensive screening process using the TCMSP, Swiss Target Prediction, and PharmMapper databases to identify the active components and their related targets in HD. In addition, we collected potential therapeutic targets of AD from the Gene Cards, Drugbank, and OMIM databases. Afterward, we utilized Cytoscape to establish both protein-protein interaction (PPI) networks and compound-target (C-T) networks. To gain further insights into the functional aspect, we performed GO and KEGG pathway analyses using the David database. Next, we employed Autodock vina to estimate the binding force between the components and the hub genes. To validate our network pharmacology findings, we conducted relevant experiments on Caenorhabditis elegans, further confirming the reliability of our results. Then a total of six active compounds and 149 therapeutic targets were detected. Through the analysis of the association between active compounds, therapeutic targets, and signaling pathways, it was observed that the therapeutic effect of HD primarily encompassed the inhibition of Aß, suppression of AChE activity, and mitigating oxidative stress. Additionally, our investigation revealed that the key active compounds in HD primarily consisted of iridoids, which exhibited resistance against AD by acting on the Alzheimer's disease pathway and the AGE-RAGE signaling pathway in diabetic complications.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans , Hedyotis , Molecular Docking Simulation , Network Pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Hedyotis/chemistry , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Humans , Protein Interaction Maps/drug effects , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Signal Transduction/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology
5.
Front Vet Sci ; 11: 1387853, 2024.
Article in English | MEDLINE | ID: mdl-38835895

ABSTRACT

Locoweed is a poisonous plant widely present in grasslands around the world. Swainsonine (SW), an indole alkaloid that, is the main toxic component of the locoweed. To understand the mechanism of SW-induced toxicity and to delineate the metabolic profile of locoweed poisoning we performed the LC-MS/MS untargeted metabolomic study to analyze metabolites in SW-treated renal tubular epithelial cells (0.8 mg/mL, 12 h) and in order to identify the SW-induced metabolomic changes. The analysis identified 2,563 metabolites in positive ion mode and 1,990 metabolites in negative ion mode. Our results showed that the metabolites were mainly benzenoids, lipids and lipid-like molecules, nucleosides, nucleotides, and analogs, organic acids, and derivatives. The differential metabolites were primarily enriched in pathways involving bile secretion, primary bile acid biosynthesis, riboflavin metabolism, ferroptosis, drug metabolism-cytochrome P450, and primidine metabolism. We have screened out substances such as swainsonine, 3alpha,7alpha-Dihydroxy-5beta-cholestanate, 2-Hydroxyiminostilbene, and glycochenodeoxycholate, which may have the potential to serve as biomarkers for swainsonine poisoning. This study provides insights into the types of metabolomic alteration in renal tubular epithelial cells induced by swainsonine.

6.
Front Microbiol ; 15: 1407800, 2024.
Article in English | MEDLINE | ID: mdl-38939188

ABSTRACT

The iron transport system plays a crucial role in the extracellular electron transfer process of Shewanella sp. In this study, we fabricated a vertically oriented α-Fe2O3 nanoarray on carbon cloth to enhance interfacial electron transfer in Shewanella putrefaciens CN32 microbial fuel cells. The incorporation of the α-Fe2O3 nanoarray not only resulted in a slight increase in flavin content but also significantly enhanced biofilm loading, leading to an eight-fold higher maximum power density compared to plain carbon cloth. Through expression level analyses of electron transfer-related genes in the outer membrane and core genes in the iron transport system, we propose that the α-Fe2O3 nanoarray can serve as an electron mediator, facilitating direct electron transfer between the bacteria and electrodes. This finding provides important insights into the potential application of iron-containing oxide electrodes in the design of microbial fuel cells and other bioelectrochemical systems, highlighting the role of α-Fe2O3 in promoting direct electron transfer.

7.
J Neurosurg ; : 1-13, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941649

ABSTRACT

OBJECTIVE: The highly intricate nature of the cervical spinal cord can cause arteriovenous shunts in these segments that may be associated with heightened clinical risks and treatment complexities. In this article, the authors aimed to provide a comprehensive analysis of the detailed natural course, treatment, and clinical outcomes of cervical spinal cord arteriovenous shunts (SCAVSs) based on the largest cohort to date. METHODS: Two hundred forty consecutive patients were included. Data on clinical presentation, angioarchitecture, treatment, and follow-up were retrospectively reviewed. RESULTS: The cohort demonstrated a greater prevalence of acute onset (63.3% vs 36.7%). Spontaneous recovery was observed in 63.7% of patients after onset, with a significantly elevated recovery rate observed among patients experiencing acute onset (72.4% vs 48.9%, p < 0.001). The risks of acute and gradual clinical deterioration after onset was 11.9%/year and 13.4%/year, respectively. Microsurgery was performed in 39.6% of patients, while the remaining 60.4% exclusively underwent embolization. The complete obliteration rate was 65.3% after microsurgery and 21.4% after embolization. The rate of treatment-related deterioration was 14.7% after microsurgery and 6.2% after embolization. After partial treatment, the acute and gradual deterioration rates were 4.1%/year and 6.6%/year, respectively. Lack of spontaneous recovery after onset was an independent predictor of embolization-related deterioration (OR 17.905, p = 0.007) and long-term gradual deterioration after partial treatment (HR 2.325, p = 0.021). After a median follow-up period of 32.55 months, prognosis was unfavorable in 16.7% of patients, with the sole independent risk factor being the absence of spontaneous recovery after onset (OR 2.476, p = 0.018). CONCLUSIONS: The outcomes of patients with cervical SCAVS were generally favorable, even in patients with only partial obliteration of the lesions. However, patients who did not show a trend toward spontaneous recovery after onset had a significantly elevated risk of unfavorable prognosis, highlighting the need for prompt clinical intervention.

8.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38920341

ABSTRACT

Drug-target interactions (DTIs) are a key part of drug development process and their accurate and efficient prediction can significantly boost development efficiency and reduce development time. Recent years have witnessed the rapid advancement of deep learning, resulting in an abundance of deep learning-based models for DTI prediction. However, most of these models used a single representation of drugs and proteins, making it difficult to comprehensively represent their characteristics. Multimodal data fusion can effectively compensate for the limitations of single-modal data. However, existing multimodal models for DTI prediction do not take into account both intra- and inter-modal interactions simultaneously, resulting in limited presentation capabilities of fused features and a reduction in DTI prediction accuracy. A hierarchical multimodal self-attention-based graph neural network for DTI prediction, called HMSA-DTI, is proposed to address multimodal feature fusion. Our proposed HMSA-DTI takes drug SMILES, drug molecular graphs, protein sequences and protein 2-mer sequences as inputs, and utilizes a hierarchical multimodal self-attention mechanism to achieve deep fusion of multimodal features of drugs and proteins, enabling the capture of intra- and inter-modal interactions between drugs and proteins. It is demonstrated that our proposed HMSA-DTI has significant advantages over other baseline methods on multiple evaluation metrics across five benchmark datasets.


Subject(s)
Deep Learning , Neural Networks, Computer , Proteins/chemistry , Proteins/metabolism , Humans , Algorithms , Computational Biology/methods
9.
Nano Lett ; 24(26): 8198-8207, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904269

ABSTRACT

Responsive luminescent materials that reversibly react to external stimuli have emerged as prospective platforms for information encryption applications. Despite brilliant achievements, the existing fluorescent materials usually have low information density and experience inevitable information loss when subjected to mechanical damage. Here, inspired by the hierarchical nanostructure of fluorescent proteins in jellyfish, we propose a self-healable, photoresponsive luminescent elastomer based on dynamic interface-anchored borate nanoassemblies for smart dual-model encryption. The rigid cyclodextrin molecule restricts the movement of the guest fluorescent molecules, enabling long room-temperature phosphorescence (0.37 s) and excitation wavelength-responsive fluorescence. The building of reversible interfacial bonding between nanoassemblies and polymer matrix together with their nanoconfinement effect endows the nanocomposites with excellent mechanical performances (tensile strength of 15.8 MPa) and superior mechanical and functional recovery capacities after damage. Such supramolecular nanoassemblies with dynamic nanoconfinement and interfaces enable simultaneous material functionalization and self-healing, paving the way for the development of advanced functional materials.

10.
Medicine (Baltimore) ; 103(24): e38490, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875422

ABSTRACT

BACKGROUND: Previous observational studies have suggested a possible association between periodontal disease and gastric cancer (GC); however, a causal relationship has not yet been established. This study aimed to explore the causal relationship between the 2 through a 2-sample bidirectional Mendelian randomization (MR) study. METHODS: Genome-wide association studies (GWAS) summary statistics were obtained from publicly available GWAS and relevant databases. Two-sample bidirectional MR analysis was conducted to investigate the causal relationship between periodontal disease and GC using the inverse-variance weighted (IVW) method selected as the primary analytical approach. Cochran Q test, MR-PRESSO, MR-pleiotropy, and leave-one-out analyses were performed to assess heterogeneity, pleiotropy, and sensitivity. RESULTS: In European ancestry, IVW analysis revealed no causal relationship between periodontal disease and GC (OR = 1.873; 95% CI [4.788e-10, 7.323e + 09]; P = .956), or between loose teeth and GC (OR = 1.064; 95% CI [0.708, 1.598]; P = .765). In East Asian ancestry, there was no causal relationship between periodontitis and GC according to IVW (OR = 0.948; 95% CI [0.886, 1.015]; P = .126). Conversely, according to the results of the IVW analysis, there was no causal relationship between GC and periodontal disease, regardless of European or East Asian ancestry. Furthermore, there was no heterogeneity or pleiotropy in the causal relationships between these variables (all P > .05), suggesting a certain level of reliability in our results. CONCLUSION: Within the limitations of this MR study, we found no mutual causal relationship between periodontal disease and GC. This finding can prevent overtreatment by clinical physicians and alleviate the psychological burden on patients.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Periodontal Diseases , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Periodontal Diseases/genetics , Periodontal Diseases/epidemiology , Asian People/genetics , White People/genetics , White People/statistics & numerical data
11.
Abdom Radiol (NY) ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907839

ABSTRACT

PURPOSE: To investigate the clinical significance and stage migration effect of radiological diameter-to-thickness (DT) ratio in HER2-positive resectable advanced gastric cancer (HER2-p RAGC). METHODS: 369 HER2-p RAGC patients were retrospectively enrolled and information on clinical pathological characteristics, radiological DT ratio, and outcomes [i.e., overall survival (OS) and progression-free survival (PFS)] was collected. Pearson's Chi-square and Student's t-test were employed to compare baseline characteristics. Clinical outcomes were estimated using Kaplan-Meier analysis and Log-rank test. Univariate and multivariate Cox regression models were utilized to analyze independent prognostic factors. RESULTS: HER2-p RAGC patients were stratified into two groups using a DT ratio cutoff value of 4.0 (p < 0.05). Patients with a DT ratio < 4.0 exhibited significantly longer OS (58.0 vs. 31.0 months) and PFS (43.0 vs. 24.0 months) than those with a DT ratio ≥ 4.0. DT ratio significantly predicted prognosis for N0 and II stage patients (p < 0.05). Patients with gastric body and antrum cancers demonstrated longer OS and PFS in the DT ratio < 4.0 group (p = 0.046, 0.017, 0.036 and 0.028). Multivariate Cox proportional hazard model identified age, pathological T category, pathological N category, pathological TNM category and DT ratio as independent prognostic factors. Notably, pStage II patients with a DT ratio ≥ 4.0 exhibited a similar prognosis to pStage III patients with a DT ratio < 4.0 (p = 0.418 for OS, 0.867 for PFS). CONCLUSION: Radiological DT ratio could evaluate the prognosis and detect higher malignant cases in HER2-p RAGC patients. Moreover, DT ratio might guide clinicians make postoperative strategies. TRIAL REGISTRATION: Retrospectively registered.

12.
J Hazard Mater ; 476: 135001, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908175

ABSTRACT

Al-PILC was used to catalyze the chlorine oxidation of Mn(II) in aqueous solution. The effects of various catalysts, catalyst dosage, chlorine dosage, pH value, temperature and organic content on the oxidation process were investigated. Results show that 1.5 mg/L chlorine can quickly oxidize Mn(II) from 0.5 mg/L to less than 0.04 mg/L with 10 mg/L Al-PILC. Using catalysts with higher porosity and higher SA, increase in chlorine concentration, increase in catalyst dosage, higher pH, and higher temperature can significantly enhance the rate of Mn(II) catalytic oxidation. The Mn(II) oxidation process includes the homogeneous oxidation, catalytic oxidation on the surface of the catalysts and self-catalytic oxidation produced by the newly produced MnOx. Al-PILC surface provides active sites for chlorine oxidation Mn(II) in the water, and also provides binding sites for the newly produced MnOx, which has higher catalytic activity and thus has an self-catalytic oxidation effect. The higher the porosity and SA of Al-PILC, the more catalytic oxidation active sites and loading sites, and the better the catalytic oxidation effect. The study promotes the understanding of chlorine catalyzed oxidation Mn(II) in aqueous solution, but also provide important guide to study newly efficient catalysts to oxidize Mn(II) with chlorine in aqueous solution.

13.
ACS Appl Mater Interfaces ; 16(24): 31657-31665, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38838205

ABSTRACT

As a pivotal component in human-machine interactions, display devices have undergone rapid development in modern life. Displays such as alternative current electroluminescence|alternative current electroluminescent (ACEL) devices with high flexibility and long operational lifetimes are essential for wearable electronics. However, ACEL devices are constrained by their inherent high driving voltage and complex fabrication processes. Our work presents an easy blade-coating method for fabricating flexible ACEL display devices based on an all-solution process. By dispersing BaTiO3 and ZnS/Cu powder into waterborne polyurethane, we successfully combined dielectric and fluorescence functionalities within a single layer, significantly reducing the device's driving voltage. Additionally, the ionic conducting hydrogel was chosen as a transparent electrode to achieve good electrical contact and strong interfacial adhesion through in situ polymerization. Owing to the unique method, our ACEL device exhibits high flexibility, low driving voltage (20-100 V), high brightness (300+ cd/m2 at 60 V), and environmental friendliness. Furthermore, by repurposing the hydrogel electrode, we integrated strain visualization capabilities within a single device, highlighting its potential for applications such as wearable healthcare monitoring.

14.
Brain Res Bull ; 214: 110995, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844172

ABSTRACT

Tongue coating affects cognition, and cognitive decline at early stage also showed relations to functional and structural remodeling of superior temporal sulcus (STS) in amnestic mild cognitive impairment (aMCI). The potential correlation between disparate cognitive manifestations in aMCI patients with different tongue coatings, and corresponding mechanisms of STS remodeling remains uncharted. In this case-control study, aMCI patients were divided into thin coating (n = 18) and thick coating (n = 21) groups. All participants underwent neuropsychological evaluations and multimodal magnetic resonance imaging. Group comparisons were conducted in clinical assessments and neuroimaging measures of banks of the STS (bankssts). Generalized linear models were constructed to explore relationships between neuroimaging measures and cognition. aMCI patients in the thick coating group exhibited significantly poorer immediate and delayed recall and slower information processing speed (IPS) (P < 0.05), and decreased functional connectivity (FC) of bilateral bankssts with frontoparietal cortices (P < 0.05, AlphaSim corrected) compared to the thin coating group. It was found notable correlations between cognition encompassing recall and IPS, and FC of bilateral bankssts with frontoparietal cortices (P < 0.05, Bonferroni's correction), as well as interaction effects of group × regional homogeneity (ReHo) of right bankssts on the first immediate recall (P < 0.05, Bonferroni's correction). aMCI patients with thick coating exhibited poor cognitive performance, which might be attributed to decreased FC seeding from bankssts. Our findings strengthen the understanding of brain reorganization of STS via which tongue coating status impacts cognition in patients with aMCI.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Temporal Lobe , Tongue , Humans , Cognitive Dysfunction/physiopathology , Male , Female , Aged , Temporal Lobe/physiopathology , Temporal Lobe/diagnostic imaging , Magnetic Resonance Imaging/methods , Tongue/physiopathology , Case-Control Studies , Middle Aged , Neuropsychological Tests , Amnesia/physiopathology , Amnesia/diagnostic imaging , Mental Recall/physiology
15.
Front Surg ; 11: 1344269, 2024.
Article in English | MEDLINE | ID: mdl-38872725

ABSTRACT

Objective: To assess the feasibility, safety, and efficiency of simultaneous anterograde video laparoscopic inguinal and pelvic lymphadenectomy for penile cancer. Materials and methods: We reviewed retrospectively the records of 22 patients (44 lateral) who underwent inguinal lymph nodes dissection for penile cancer. The procedure was standardized as two planes, three holes, and six steps. Two Separate-planes: superior plane of eternal oblique aponeurosis/ / fascia lata; inferior plane of superficial camper fascia. Three holes: two artificial lateral boundary holes, the internal and external boundary holes, and the hole of oval fossa. Six steps: separate the first separate-plane; separate the second layer; separate two artificial lateral boundary holes; free great saphenous vein; separate the third hole and clean up the deep inguinal lymph nodes; pelvic lymphadenectomy. Results: A total of 22 cases were included and 9 patients underwent simultaneous pelvic lymphadenectomy. The average operation time on both sides was 7.52 ± 3.29 h, which was 0.5-1 h/side after skilled. The average amount of bleeding was 93.18 ± 50.84 ml. A total of 8 patients had postoperative complications, accounting for 36.36%, and no complications great than Clavien-Dindo class III occurred. Conclusion: This study demonstrated that the video laparoscopic simultaneous anterograde inguinal and pelvic lymphadenectomy is a feasible and safe technique. Indocyanine Green was helpful for lymph node identify.

16.
Materials (Basel) ; 17(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38730755

ABSTRACT

The production of wheat straw waste board materials encounters challenges, including inadequate inherent adhesiveness and the utilization of environmentally harmful adhesives. Employing a hot-pressed method for converting wheat straw into board materials represents a positive stride towards the resourceful utilization of agricultural wastes. This study primarily focuses on examining the influence of hot-pressing process conditions on the mechanical properties of wheat straw board materials pretreated with dilute acid. Additionally, it assesses the necessity of dilute acid treatment and optimizes the hot-pressing conditions to achieve optimal results at 15 MPa, 2 h, and 160 °C. Furthermore, a comprehensive process is developed for preparing wheat straw hot-pressed board materials by combining dilute acid pretreatment with surface modification treatments, such as glutaraldehyde, citric acid, and rosin. Finally, a thorough characterization of the mechanical properties of the prepared board materials is conducted. The results indicate a substantial improvement in tensile strength across all modified wheat straw board materials compared to untreated ones. Notably, boards treated with glutaraldehyde exhibited the most significant enhancement, achieving a tensile strength of 463 kPa, bending strength of 833 kPa, and a water absorption rate of 14.14%. This study demonstrates that combining dilute acid pretreatment with surface modification treatments effectively enhances the performance of wheat straw board materials, offering a sustainable alternative to traditional wood-based board materials.

17.
Nat Commun ; 15(1): 3765, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704402

ABSTRACT

The dry reforming of methane provides an attractive route to convert greenhouse gases (CH4 and CO2) into valuable syngas, so as to resolve the carbon cycle and environmental issues. However, the development of high-performance catalysts remains a huge challenge. Herein, we report a 0.6% Ir/CeO2-x catalyst with a metal-support interface structure which exhibits high CH4 (~72%) and CO2 (~82%) conversion and a CH4 reaction rate of ~973 µmolCH4 gcat-1 s-1 which is stable over 100 h at 700 °C. The performance of the catalyst is close to the state-of-the-art in this area of research. A combination of in situ spectroscopic characterization and theoretical calculations highlight the importance of the interfacial structure as an intrinsic active center to facilitate the CH4 dissociation (the rate-determining step) and the CH2* oxidation to CH2O* without coke formation, which accounts for the long-term stability. The catalyst in this work has a potential application prospect in the field of high-value utilization of carbon resources.

18.
ISA Trans ; 150: 243-261, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744610

ABSTRACT

Electro-hydraulic systems are extensively utilized to generate desired acceleration waveforms to provide a vibration environment for testing the performance and reliability of objects in various industrial applications. However, as electro-hydraulic systems are often affected by some inevitable drawbacks resulted from hydraulic nonlinearities, unwanted dynamic variations and disturbances, the generated acceleration waveform is generally far behind the expectation. In this paper, a convex combined adaptive controller with input shaping technique is proposed for enhancing the transient acceleration waveform replication accuracy of electro-hydraulic systems. The proposed controller is comprised of a three variable controller at the bottom level, an input shaping technique controller at the middle level, and a convex combined adaptive controller at the upper level. The three variable controller is firstly utilized for the establishment of a fundamental closed-loop acceleration control system, and then the input shaping technique controller is constructed by introducing an offline designed inverse prefilter utilizing the multi-innovation recursive least squares algorithm and the zero magnitude error tracking algorithm. The convex combined adaptive controller at the upper level is comprised of two individual adaptive filters with high and low step sizes, which provides the merits of fast convergence rate and high tracking accuracy, and it is further exploited to address for system's dynamic variations, model uncertainties and unexpected perturbations. Comparative experiments of the proposed controller with a manually generated random waveform and a recorded earthquake waveform as the testing inputs are conducted on a typical electro-hydraulic test bench, and the corresponding results demonstrate the feasibility and superiority of the proposed controller in improving the transient acceleration waveform replication performance of electro-hydraulic systems.

19.
Angew Chem Int Ed Engl ; : e202407007, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806441

ABSTRACT

Designing and synthesizing narrow band gap acceptors that exhibit high photoluminescence quantum yield (PLQY) and strong crystallinity is a highly effective, yet challenging, approach to reducing non-radiative energy losses (▵Enr) and boosting the performance of organic solar cells (OSCs). We have successfully designed and synthesized an A-D-A type fused-ring electron acceptor, named DM-F, which features a planar molecular backbone adorned with bulky three-dimensional camphane side groups at its central core. These bulky substituents effectively hinder the formation of H-aggregates of the acceptors, promoting the formation of more J-aggregates and notably elevating the PLQY of the acceptor in the film. As anticipated, DM-F showcases pronounced near-infrared absorption coupled with impressive crystallinity. Organic solar cells (OSCs) leveraging DM-F exhibit a high EQEEL value and remarkably low ▵Enr of 0.14 eV-currently the most minimal reported value for OSCs. Moreover, the power conversion efficiency (PCE) of binary and ternary OSCs utilizing DM-F has reached 16.16 % and 20.09 %, respectively, marking a new apex in reported efficiency within the OSCs field. In conclusion, our study reveals that designing narrow band gap acceptors with high PLQY is an effective way to reduce ▵Enr and improve the PCE of OSCs.

20.
Ecotoxicol Environ Saf ; 279: 116515, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810283

ABSTRACT

Pyrrolizidine alkaloids (PAs) are a group of naturally occurring alkaloids widely present in plants. PAs are highly hepatotoxic and have been documented to cause many incidents of human and animal poisoning. Retrorsine (RTS) is a pyrrolizidine alkaloid (PA) derived from the Compositae Senecio, which has been shown to cause hepatotoxicity. Human liver poisoning occurs through the consumption of RTS-contaminated food, and animals can also be poisoned by ingesting RTS-containing toxic plants. The mechanism of RTS-induced liver toxicity is not fully understood. In this study, we demonstrated that RTS-induced oxidative stress plays a pivotal role in RTS-induced liver toxicity involving apoptosis and autophagy. The results showed that RTS treatment in the cultured Primary rat hepatocytes caused cytotoxicity and release of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in a time- and dose-dependent manner. Our study showed that treatment of RTS induced ROS and MDA (malondialdehyde, a lipid peroxidation marker) in the hepatocytes, and reduced antioxidant capacity (GSH content, SOD activity), suggesting RTS treatment caused oxidative stress response in the hepatocytes. Furthermore, we found that RTS induced apoptosis and autophagy in the hepatocytes, and RTS-induced apoptosis and autophagy could be alleviated by ROS scavenger N-acetylcysteine (NAC) and the MAPK pathway inhibitors suggesting ROS/MAPK signaling pathway plays a role in RTS induced apoptosis and autophagy. Collectively, this study reveals the regulatory mechanism of oxidative stress in RTS-induced apoptosis and autophagy in the hepatocytes, providing important insights of molecular mechanisms of hepatotoxicity induced by RTS and related pyrrolizidine alkaloids in liver. This mechanism provides a basis for the prevention and treatment of PA poisoning in humans and animals.


Subject(s)
Apoptosis , Autophagy , Hepatocytes , Oxidative Stress , Pyrrolizidine Alkaloids , Animals , Oxidative Stress/drug effects , Hepatocytes/drug effects , Apoptosis/drug effects , Autophagy/drug effects , Pyrrolizidine Alkaloids/toxicity , Rats , Male , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Cells, Cultured , Aspartate Aminotransferases , Alanine Transaminase
SELECTION OF CITATIONS
SEARCH DETAIL
...