Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
ESC Heart Fail ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887208

ABSTRACT

AIMS: To retrospectively compare the long-term outcomes following atrial fibrillation (AF) ablation between heart failure (HF) with preserved ejection fraction (EF) (HFpEF) and reduced/mildly reduced EF (HFr-mrEF) patients, and to identify novel predictors of adverse clinical events. METHODS: In total, 1402 AF patients with HF who underwent successful ablation were consecutively enrolled. Adverse clinical events including all-cause death, HF hospitalization, and stroke were followed up. Cox proportional hazards models were used to assess the associations between clinical factors and events. Kaplan-Meier analysis was performed to estimate the cumulative incidences of these events. A receiver operating characteristic curve was used to test the ability of these predictors. RESULTS: During a follow-up period of 42 ± 15 months, 265 (18.9%) patients experienced adverse clinical events after ablation. The cumulative incidence of adverse clinical events was significantly higher in HFr-mrEF than in HFpEF (25.4% vs. 15.7%, P < 0.001), the similar tendency was observed on all-cause death (10.5% vs. 6.5%, P = 0.011) and HF hospitalization (17.2% vs. 10.1%, P < 0.001). After multivariate adjustment, non-paroxysmal AF [hazard ratio (HR) 1.922, 95% confidence interval (CI) 1.130-3.268, P = 0.016], LAD ≥ 45 mm (HR 2.197, 95% CI 1.206-4.003, P < 0.001), LVEF (HR 0.959, 95% CI 0.946-0.981, P < 0.001), and RAD ≥ 45 mm (HR 2.044, 95% CI 1.362-3.238, P < 0.001) remained the independent predictors for developing adverse clinical events. A predictive model performed with non-paroxysmal AF, LAD ≥ 45 mm and RAD ≥ 45 mm yielded an area under curve of 0.728 (95% CI 0.696-0.760, P < 0.001). CONCLUSIONS: AF patients with HFpEF had better long-term outcomes than those with HFr-mrEF, and moderate/severe biatrial dilation could predict adverse clinical events following catheter ablation in AF and HF patients.

2.
Front Oncol ; 14: 1391486, 2024.
Article in English | MEDLINE | ID: mdl-38826785

ABSTRACT

Introduction: Immune infiltration within the tumor microenvironment (TME) plays a significant role in the onset and progression of hepatocellular carcinoma (HCC). Machine learning applied to pathological images offers a practical means to explore the TME at the cellular level. Our former research employed a transfer learning procedure to adapt a convolutional neural network (CNN) model for cell recognition, which could recognize tumor cells, lymphocytes, and stromal cells autonomously and accurately within the images. This study introduces a novel immune classification system based on the modified CNN model. Method: Patients with HCC from both Beijing Hospital and The Cancer Genome Atlas (TCGA) database were included in this study. Additionally, least absolute shrinkage and selection operator (LASSO) analyses, along with logistic regression, were utilized to develop a prognostic model. We proposed an immune classification based on the percentage of lymphocytes, with a threshold set at the median lymphocyte percentage. Result: Patients were categorized into high or low infiltration subtypes based on whether their lymphocyte percentages were above or below the median, respectively. Patients with different immune infiltration subtypes exhibited varying clinical features and distinct TME characteristics. The low-infiltration subtype showed a higher incidence of hypertension and fatty liver, more advanced tumor stages, downregulated immune-related genes, and higher infiltration of immunosuppressive cells. A reliable prognostic model for predicting early recurrence of HCC based on clinical features and immune classification was established. The area under the curve (AUC) of the receiver operating characteristic (ROC) curves was 0.918 and 0.814 for the training and test sets, respectively. Discussion: In conclusion, we proposed a novel immune classification system based on cell information extracted from pathological slices, provides a novel tool for prognostic evaluation in HCC.

3.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833982

ABSTRACT

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Subject(s)
Biodegradation, Environmental , Burkholderiales , Escherichia coli , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Burkholderiales/enzymology , Escherichia coli/genetics , Bacillus anthracis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Engineering
4.
J Am Med Inform Assoc ; 31(7): 1551-1560, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38758667

ABSTRACT

OBJECTIVE: Synthesizing and evaluating inconsistent medical evidence is essential in evidence-based medicine. This study aimed to employ ChatGPT as a sophisticated scientific reasoning engine to identify conflicting clinical evidence and summarize unresolved questions to inform further research. MATERIALS AND METHODS: We evaluated ChatGPT's effectiveness in identifying conflicting evidence and investigated its principles of logical reasoning. An automated framework was developed to generate a PubMed dataset focused on controversial clinical topics. ChatGPT analyzed this dataset to identify consensus and controversy, and to formulate unsolved research questions. Expert evaluations were conducted 1) on the consensus and controversy for factual consistency, comprehensiveness, and potential harm and, 2) on the research questions for relevance, innovation, clarity, and specificity. RESULTS: The gpt-4-1106-preview model achieved a 90% recall rate in detecting inconsistent claim pairs within a ternary assertions setup. Notably, without explicit reasoning prompts, ChatGPT provided sound reasoning for the assertions between claims and hypotheses, based on an analysis grounded in relevance, specificity, and certainty. ChatGPT's conclusions of consensus and controversies in clinical literature were comprehensive and factually consistent. The research questions proposed by ChatGPT received high expert ratings. DISCUSSION: Our experiment implies that, in evaluating the relationship between evidence and claims, ChatGPT considered more detailed information beyond a straightforward assessment of sentimental orientation. This ability to process intricate information and conduct scientific reasoning regarding sentiment is noteworthy, particularly as this pattern emerged without explicit guidance or directives in prompts, highlighting ChatGPT's inherent logical reasoning capabilities. CONCLUSION: This study demonstrated ChatGPT's capacity to evaluate and interpret scientific claims. Such proficiency can be generalized to broader clinical research literature. ChatGPT effectively aids in facilitating clinical studies by proposing unresolved challenges based on analysis of existing studies. However, caution is advised as ChatGPT's outputs are inferences drawn from the input literature and could be harmful to clinical practice.


Subject(s)
Evidence-Based Medicine , Humans , PubMed
5.
Plant Cell Rep ; 43(6): 154, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809335

ABSTRACT

KEY MESSAGE: Integrated omics analyses outline the cellular and metabolic events of hemp plants in response to salt stress and highlight several photosynthesis and energy metabolism related pathways as key regulatory points. Soil salinity affects many physiological processes of plants and leads to crop yield losses worldwide. For hemp, a crop that is valued for multiple aspects, such as its medical compounds, fibre, and seed, a comprehensive understanding of its salt stress responses is a prerequisite for resistance breeding and tailoring its agronomic performance to suit certain industrial applications. Here, we first observed the phenotype of salt-stressed hemp plants and found that under NaCl treatment, hemp plants displayed pronounced growth defects, as indicated by the significantly reduced average height, number of leaves, and chlorophyll content. Next, we conducted comparative proteomics and metabolomics to dissect the complex salt-stress response mechanisms. A total of 314 proteins and 649 metabolites were identified to be differentially behaving upon NaCl treatment. Functional classification and enrichment analysis unravelled that many differential proteins were proteases associated with photosynthesis. Through metabolic pathway enrichment, several energy-related pathways were found to be altered, such as the biosynthesis and degradation of branched-chain amino acids, and our network analysis showed that many ribosomal proteins were involved in these metabolic adaptations. Taken together, for hemp plants, influences on chloroplast function probably represent a major toxic effect of salinity, and modulating several energy-producing pathways possibly through translational regulation is presumably a key protective mechanism against the negative impacts. Our data and analyses provide insights into our understanding of hemp's stress biology and may lay a foundation for future functional genomics studies.


Subject(s)
Cannabis , Metabolomics , Plant Proteins , Proteomics , Salinity , Cannabis/metabolism , Cannabis/genetics , Cannabis/physiology , Cannabis/drug effects , Proteomics/methods , Metabolomics/methods , Plant Proteins/metabolism , Plant Proteins/genetics , Salt Stress , Photosynthesis/drug effects , Gene Expression Regulation, Plant/drug effects , Stress, Physiological , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Sodium Chloride/pharmacology , Chlorophyll/metabolism , Metabolome/drug effects , Phenotype
7.
BMC Plant Biol ; 24(1): 244, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575936

ABSTRACT

BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.


Subject(s)
Arachis , Genome-Wide Association Study , Arachis/genetics , Quantitative Trait Loci/genetics , Plant Breeding , Chromosome Mapping/methods , Phenotype , Polymorphism, Single Nucleotide/genetics
8.
Infect Med (Beijing) ; 3(1): 100094, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444746

ABSTRACT

Background: In this study, we present a case of Japanese spotted fever (JSF) caused by Rickettsia japonica and use this case to investigate the process of diagnosing and reintegrating traceability of infectious diseases via metagenomic next-generation sequencing (mNGS). Methods: From data relating to epidemiological history, clinical and laboratory examinations, and mNGS sequencing, a diagnosis of severe JSF was concluded. Results: A detailed field epidemiological investigation discovered parasitic Haemaphysalis longicornis from a host animal (dog) in the domicile of the patient, within which R. japonica was detected, along with a diverse array of other potentially pathogenic microorganisms that could cause other infectious diseases. Conclusion: The mNGS provided an efficient method to diagnose JSF infection. This methodology could also be applied to field epidemiological investigations to establish the traceability of infectious diseases.

10.
Mar Pollut Bull ; 197: 115729, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913562

ABSTRACT

Photodegradation significantly influences marine oil spill behavior, yet its role remains underrepresented in current models, impairing predictive accuracy. Addressing this, our study rigorously examined oil properties and environmental determinants affecting marine oil spill photodegradation through laboratory simulations. We identified and quantified key factors and their interactions, noting particularly the positive influence of asphaltene and negative implications of oil density. We also discerned a negative correlation between n-alkane degradation and carbon numbers. Our findings underscored the pivotal roles of temperature and irradiance in photodegradation. All tested oils adhered to first-order kinetics, with rate constants ranging from 0.0348 to 0.0645 day-1. Finally, we introduced a novel model incorporating temperature, irradiance and their interactions, ensuring reasonable simulations for marine oil spill photodegradation, fortifying marine oil spill management strategies.


Subject(s)
Petroleum Pollution , Water Pollutants, Chemical , Petroleum Pollution/analysis , Photolysis , Oils
11.
Front Microbiol ; 14: 1265139, 2023.
Article in English | MEDLINE | ID: mdl-37849919

ABSTRACT

Polyethylene terephthalate (PET) is a synthetic polymer in the polyester family. It is widely found in objects used daily, including packaging materials (such as bottles and containers), textiles (such as fibers), and even in the automotive and electronics industries. PET is known for its excellent mechanical properties, chemical resistance, and transparency. However, these features (e.g., high hydrophobicity and high molecular weight) also make PET highly resistant to degradation by wild-type microorganisms or physicochemical methods in nature, contributing to the accumulation of plastic waste in the environment. Therefore, accelerated PET recycling is becoming increasingly urgent to address the global environmental problem caused by plastic wastes and prevent plastic pollution. In addition to traditional physical cycling (e.g., pyrolysis, gasification) and chemical cycling (e.g., chemical depolymerization), biodegradation can be used, which involves breaking down organic materials into simpler compounds by microorganisms or PET-degrading enzymes. Lipases and cutinases are the two classes of enzymes that have been studied extensively for this purpose. Biodegradation of PET is an attractive approach for managing PET waste, as it can help reduce environmental pollution and promote a circular economy. During the past few years, great advances have been accomplished in PET biodegradation. In this review, current knowledge on cutinase-like PET hydrolases (such as TfCut2, Cut190, HiC, and LCC) was described in detail, including the structures, ligand-protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts were highlighted, such as improving the PET hydrolytic activity by constructing fusion proteins. The review is expected to provide novel insights for the biodegradation of complex polymers.

12.
Front Bioeng Biotechnol ; 11: 1263996, 2023.
Article in English | MEDLINE | ID: mdl-37795175

ABSTRACT

Poly(ethylene terephthalate) (PET) is a highly useful synthetic polyester plastic that is widely used in daily life. However, the increase in postconsumer PET as plastic waste that is recalcitrant to biodegradation in landfills and the natural environment has raised worldwide concern. Currently, traditional PET recycling processes with thermomechanical or chemical methods also result in the deterioration of the mechanical properties of PET. Therefore, it is urgent to develop more efficient and green strategies to address this problem. Recently, a novel mesophilic PET-degrading enzyme (IsPETase) from Ideonella sakaiensis was found to streamline PET biodegradation at 30°C, albeit with a lower PET-degrading activity than chitinase or chitinase-like PET-degrading enzymes. Consequently, the molecular engineering of more efficient PETases is still required for further industrial applications. This review details current knowledge on IsPETase, MHETase, and IsPETase-like hydrolases, including the structures, ligand‒protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts are highlighted, including metabolic engineering of the cell factories, enzyme immobilization or cell surface display. The information is expected to provide novel insights for the biodegradation of complex polymers.

13.
Curr Top Med Chem ; 23(20): 1973-1984, 2023.
Article in English | MEDLINE | ID: mdl-37264622

ABSTRACT

Nonribosomal peptide synthetases, consisted of multiple catalytic domains, are involved in the biosynthesis of an important family of bioactive natural products in a coordinated manner. Among the functional domains, adenylation domains are specifically responsible for recognizing carboxylic acid building blocks and synthesizing aminoacyl adenylates. Given their critical roles in the biosynthesis of the growing peptide, A-domains are also referred to as the "gatekeeper". In this review, very recent developments on the A-domains from NRPSs are reviewed to expand the fundamental knowledge of the A domain, including knowledge on the structures, functions, and molecular interactions. Several recent examples were also discussed to highlight the great potential of A-domain engineering. This study should provide a framework for the combinatorial biosynthesis or synthetic biology-driven microbial production of novel nonribosomal peptides.


Subject(s)
Peptide Synthases , Peptides , Catalytic Domain , Peptide Synthases/genetics , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Peptides/chemistry , Adenosine Monophosphate
14.
Front Oncol ; 13: 1136049, 2023.
Article in English | MEDLINE | ID: mdl-37114132

ABSTRACT

Introduction: Early-stage accurate diagnosis of malignant pleural mesothelioma (MPM) has always been a formidable challenge. DNA and protein as biomarkers for the diagnosis of MPM have received considerable attention, and yet the outcomes are inconsistent. Methods: In this study, a systematic search employing PubMed, EMBASE, and Cochrane Library to identify relevant studies from the first day of databases to October 2021. Moreover, we adopt the QUADAS-2 to evaluate the quality of eligible studies and Stata 15.0 and Review Manager 5.4 software programs to perform the meta-analysis. Additionally, bioinformatics analysis was performed at GEPIA for the purpose of exploring relationship between related genes and the survival time of MPM patients. Results: We included 15 studies at the DNA level and 31studies at the protein level in this meta-analysis. All results demonstrated that the diagnostic accuracy of the combination of MTAP + Fibulin-3 was the highest with the SEN 0.81 (95% CI: 0.67, 0.89) and the SPE 0.95 (95% CI: 0.90, 0.97). And the bioinformatics analysis indicated that the higher MTAP gene expression level was beneficial to enhance the survival time of MPM patients. Discussion: Nonetheless, as a result of the limitations of the included samples, it may be necessary to conduct additional research before drawing conclusions. Systematic review registration: https://inplasy.com/inplasy-2022-10-0043/, identifier INPLASY2022100043.

15.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 1131-1141, 2023 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-36994577

ABSTRACT

The α-amino acid ester acyltransferase (SAET) from Sphingobacterium siyangensis is one of the enzymes with the highest catalytic ability for the biosynthesis of l-alanyl-l-glutamine (Ala-Gln) with unprotected l-alanine methylester and l-glutamine. To improve the catalytic performance of SAET, a one-step method was used to rapidly prepare the immobilized cells (SAET@ZIF-8) in the aqueous system. The engineered Escherichia coli (E. coli) expressing SAET was encapsulated into the imidazole framework structure of metal organic zeolite (ZIF-8). Subsequently, the obtained SAET@ZIF-8 was characterized, and the catalytic activity, reusability and storage stability were also investigated. Results showed that the morphology of the prepared SAET@ZIF-8 nanoparticles was basically the same as that of the standard ZIF-8 materials reported in literature, and the introduction of cells did not significantly change the morphology of ZIF-8. After repeated use for 7 times, SAET@ZIF-8 could still retain 67% of the initial catalytic activity. Maintained at room temperature for 4 days, 50% of the original catalytic activity of SAET@ZIF-8 could be retained, indicating that SAET@ZIF-8 has good stability for reuse and storage. When used in the biosynthesis of Ala-Gln, the final concentration of Ala-Gln reached 62.83 mmol/L (13.65 g/L) after 30 min, the yield reached 0.455 g/(L·min), and the conversion rate relative to glutamine was 62.83%. All these results suggested that the preparation of SAET@ZIF-8 is an efficient strategy for the biosynthesis of Ala-Gln.


Subject(s)
Escherichia coli , Zeolites , Escherichia coli/genetics , Glutamine , Zeolites/chemistry , Amino Acids
17.
Mol Biol Rep ; 50(1): 361-376, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334232

ABSTRACT

BACKGROUND: Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits. Formerly, the underlying molecular and regulatory mechanism of (bZIP) transcription factors responsive to chilling injury in peach fruit is still elusive. METHODS AND RESULTS: In the current experiment, the solute peach 'Zhongyou Peach No. 13' was used as the test material and cold storage at low temperature (4 °C). It was found that long-term low-temperature storage induced the production of ethylene, the hardness of the pulp decreased, and the low temperature also induced ABA accumulation. The changes of ABA and ethylene in peach fruits during low-temperature storage were clarified. Since the bZIP transcription factor is involved in the regulation of downstream pathways of ABA signals, 47 peach bZIP transcription factor family genes were identified through bioinformatics analysis. Further based on RT-qPCR analysis, 18 PpbZIP genes were discovered to be expressed in refrigerated peach fruits. Among them, the expression of PpbZIP23 and PpbZIP25 was significantly reduced during the refrigeration process, the promoter analysis of these genes found that this region contains the MYC/MYB/ABRES binding element, but not the DRES/CBFS element, indicating that the expression may be regulated by the ABA-dependent cold induction pathway, thereby responding to chilling injury in peach fruit. CONCLUSIONS: Over investigation will provide new insights for further postharvest protocols related to molecular changes during cold storage and will prove a better cope for chilling injury.


Subject(s)
Prunus persica , Prunus persica/genetics , Prunus persica/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Fruit/metabolism , Leucine Zippers , Ethylenes/metabolism , Cold Temperature , Gene Expression Regulation, Plant/genetics
18.
Front Microbiol ; 14: 1264939, 2023.
Article in English | MEDLINE | ID: mdl-38192286

ABSTRACT

Introduction: As tick-borne diseases rise to become the second most prevalent arthropod-transmitted disease globally, the increasing investigations focus on ticks correspondingly. Factors contributed to this increase include anthropogenic influences, changes in vertebrate faunal composition, social-recreational shifts, and climatic variation. Employing the 16S gene sequence method in next-generation sequencing (NGS) allows comprehensive pathogen identification in samples, facilitating the development of refined approaches to tick research omnidirectionally. Methods: In our survey, we compared the microbial richness and biological diversity of ticks in Wuwei City, Gansu province, differentiating between questing ticks found in grass and parasitic ticks collected from sheep based on 16S NGS method. Results: The results show Rickettsia, Coxiella, and Francisella were detected in all 50 Dermacentor nuttalli samples, suggesting that the co-infection may be linked to specific symbiotic bacteria in ticks. Our findings reveal significant differences in the composition and diversity of microorganisms, with the Friedmanniella and Bordetella genera existing more prevalent in parasitic ticks than in questing ticks (p < 0.05). Additionally, the network analysis demonstrates that the interactions among bacterial genera can be either promotive or inhibitive in ticks exhibiting different lifestyles with the correlation index |r| > 0.6. For instance, Francisella restrains the development of 10 other bacteria in parasitic ticks, whereas Phyllobacterium and Arthrobacter enhance colonization across all tick species. Discussion: By leveraging NGS techniques, our study reveals a high degree of species and phylogenetic diversity within the tick microbiome. It further highlights the potential to investigate the interplay between bacterial genera in both parasitic and questing ticks residing in identical habitat environments.

19.
PLoS Genet ; 18(12): e1010513, 2022 12.
Article in English | MEDLINE | ID: mdl-36477175

ABSTRACT

Walnut (Juglans) species are economically important hardwood trees cultivated worldwide for both edible nuts and high-quality wood. Broad-scale assessments of species diversity, evolutionary history, and domestication are needed to improve walnut breeding. In this study, we sequenced 309 walnut accessions from around the world, including 55 Juglans relatives, 98 wild Persian walnuts (J. regia), 70 J. regia landraces, and 86 J. regia cultivars. The phylogenetic tree indicated that J. regia samples (section Dioscaryon) were monophyletic within Juglans. The core areas of genetic diversity of J. regia germplasm were southwestern China and southern Asia near the Qinghai-Tibet Plateau and the Himalayas, and the uplift of the Himalayas was speculated to be the main factor leading to the current population dynamics of Persian walnut. The pattern of genomic variation in terms of nucleotide diversity, linkage disequilibrium, single nucleotide polymorphisms, and insertions/deletions revealed the domestication and selection footprints in Persian walnut. Selective sweep analysis, GWAS, and expression analysis further identified two transcription factors, JrbHLH and JrMYB6, that influence the thickness of the nut diaphragm as loci under selection during domestication. Our results elucidate the domestication and selection footprints in Persian walnuts and provide a valuable resource for the genomics-assisted breeding of this important crop.


Subject(s)
Juglans , Juglans/genetics , Phylogeny , Asia, Southern , China , Genomics
20.
BMC Plant Biol ; 22(1): 459, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153492

ABSTRACT

BACKGROUND: Fruit tree yield and fruit quality are affected by the tree's growth type, and branching angle is an important agronomic trait of fruit trees, which largely determines the crown structure. The weeping type of peach tree shows good ventilation and light transmission; therefore, it is commonly cultivated. However, there is no molecular marker closely linked with peach weeping traits for target gene screening and assisted breeding. RESULTS: First, we confirmed that the peach weeping trait is a recessive trait controlled by a single gene by constructing segregating populations. Based on BSA-seq, we mapped the gene controlling this trait within 159 kb of physical distance on chromosome 3. We found a 35 bp deletion in the candidate area in standard type, which was not lacking in weeping type. For histological assessments, different types of branches were sliced and examined, showing fiber bundles in the secondary xylem of ordinary branches but not in weeping branches. CONCLUSIONS: This study established a molecular marker that is firmly linked to weeping trait. This marker can be used for the selection of parents in the breeding process and the early screening of hybrid offspring to shorten the breeding cycle. Moreover, we preliminary explored histological differences between growth types. These results lay the groundwork for a better understanding of the weeping growth habit of peach trees.


Subject(s)
Prunus persica , Fruit/genetics , Phenotype , Plant Breeding , Prunus persica/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...