Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202411794, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135198

ABSTRACT

The photoconversion of CO2 into valuable chemical products using solar energy is a promising strategy to address both energy and environmental challenges. However, the strongly adsorbed CO2 frequently impedes the seamless advancement of the subsequent reaction by significantly increasing the reaction activation energy. Here, we present a BiFeO3 material with lattice strain that collaboratively regulates the d/p-2π* orbitals hybridization between metal sites and *CO2 as well as *COOH intermediates to achieve rapid conversion of solidly adsorbed CO2 to critical *COOH intermediates, accelerating the overall CO2 reduction kinetics. Quasi in-situ X-ray photoelectron spectroscopy and in-situ Fourier Transform infrared spectroscopy combined with theoretical calculation reveals that the optimized Fe sites enhance the adsorption and activation effect of CO2, and continuous internal electrons are rapidly transferred to the reaction sites and injected into the surface *CO2 and *COOH under the condition of illumination, which promotes the rapid formation and stability of *COOH. Certainly, the performance of CO2 photoreduction to CO is improved by 12.81-fold compared with the base material. This work offers a new perspective for the rapid photoreduction process of strongly adsorbed CO2.

2.
Innovation (Camb) ; 5(4): 100655, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39040688

ABSTRACT

Micro(nano)plastics (MNPs) have become a significant environmental concern due to their widespread presence in the biosphere and potential harm to ecosystems and human health. Here, we propose for the first time a MNPs capture, utilization, and storage (PCUS) concept to achieve MNPs remediation from water while meeting economically productive upcycling and environmentally sustainable plastic waste management. A highly efficient capturing material derived from surface-modified woody biomass waste (M-Basswood) is developed to remove a broad spectrum of multidimensional and compositional MNPs from water. The M-Basswood delivered a high and stable capture efficiency of >99.1% at different pH or salinity levels. This exceptional capture performance is driven by multiscale interactions between M-Basswood and MNPs, involving physical trapping, strong electrostatic attractions, and triggered MNPs cluster-like aggregation sedimentation. Additionally, the in vivo biodistribution of MNPs shows low ingestion and accumulation of MNPs in the mice organs. After MNPs remediation from water, the M-Basswood, together with captured MNPs, is further processed into a high-performance composite board product where MNPs serve as the glue for utilization and storage. Furthermore, the life cycle assessment (LCA) and techno-economic analysis (TEA) results demonstrate the environmental friendliness and economic viability of our proposed full-chain PCUS strategy, promising to drive positive change in plastic pollution and foster a circular economy.

3.
J Chromatogr A ; 1728: 465034, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38824842

ABSTRACT

Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Adsorption , Metal-Organic Frameworks/chemistry , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Organic Chemicals/chemistry , Hydrophobic and Hydrophilic Interactions , Porosity , Chromatography/methods
4.
Adv Mater ; 36(33): e2404569, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857594

ABSTRACT

Developing anode-free batteries is the ultimate goal in pursuit of high energy density and safety. It is more urgent for sodium (Na)-based batteries due to its inherently low energy density and safety hazards induced by highly reactive Na metal anodes. However, there is no electrolyte that can meet the demanding Na plating-stripping Coulomb efficiency (CE) while resisting oxidative decomposition at high voltages for building stable anode-free Na batteries. Here, a "liquid-in-solid" electrolyte design strategy is proposed to integrate target performances of liquid and solid-state electrolytes. Breaking through the Na+ transport channel of Na-containing zeolite molecular sieve by ion-exchange and confining aggregated liquid ether electrolytes in the nanopore and void of zeolites, it achieves excellent high-voltage stability enabled by solid-state zeolite electrolytes, while inheriting the ultra-high CE (99.84%) from liquid ether electrolytes. When applied in a 4.25 V-class anode-free Na battery, an ultra-high energy density of 412 W h kg-1 (based on the active material of both cathodes and anodes) can be reached, which is comparable to the state-of-the-art graphite||LiNi0.8Co0.1Mn0.1O2 lithium-ion batteries. Furthermore, the assembled anode-free pouch cell exhibits excellent cycling stability, and a high capacity retention of 89.2% can be preserved after 370 cycles.

5.
Opt Express ; 32(10): 16913-16924, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858887

ABSTRACT

What we believe to be a novel reconfigurable multi-channel microwave photonic (MWP) receiver for multi-band RF signal is demonstrated for the first time, to the best of our knowledge. A reconfigurable MWP signal processing chip based on two cascaded microring filter banks is employed in the proposed receiver, which slices the multi-band RF input into several narrow band signals and selects optical frequency comb lines for frequency converting of each channel. Due to the significant reconfigurability of the signal processing chip, the proposed receiver can flexibly choose the output frequency band of each channel, and thus different frequency components of the multi-band RF input can be down converted to the intermediate frequency (IF) band for receiving or converted to other frequency band for forwarding. A multi-band RF signal composed of a linear frequency modulation (LFM) signal with 2 GHz bandwidth and a quad-phase shift keyed (QPSK) signal with 100 Mbit/s rate is experimentally received and reconstructed by the proposed receiver, where the reconstructed LFM component exhibits a signal to noise ratio (SNR) of 10.2 dB, and the reconstructed QPSK component reaches a high SNR of 26.1 dB and a great error vector magnitude (EVM) of 11.73%. On the other hand, the QPSK component of the multi-band RF signal centered at 13.5 GHz is successfully converted to 3.1 GHz.

6.
Front Public Health ; 12: 1351568, 2024.
Article in English | MEDLINE | ID: mdl-38689767

ABSTRACT

Introduction: Physical and mental health problems among pilots affect their working state and impact flight safety. Although pilots' physical and mental health problems have become increasingly prominent, their health has not been taken seriously. This study aimed to clarify challenges and support needs related to psychological and physical health among pilots to inform development of a more scientific and comprehensive physical and mental health system for civil aviation pilots. Methods: This qualitative study recruited pilots from nine civil aviation companies. Focus group interviews via an online conference platform were conducted in August 2022. Colaizzi analysis was used to derive themes from the data and explore pilots' experiences, challenges, and support needs. Results: The main sub-themes capturing pilots' psychological and physical health challenges were: (1) imbalance between family life and work; (2) pressure from assessment and physical examination eligibility requirements; (3) pressure from worries about being infected with COVID-19; (4) nutrition deficiency during working hours; (5) changes in eating habits because of the COVID-19 pandemic; (6) sleep deprivation; (7) occupational diseases; (8) lack of support from the company in coping with stress; (9) pilots' yearly examination standards; (10) support with sports equipment; (11) respecting planned rest time; and (12) isolation periods. Discussion: The interviewed pilots experienced major psychological pressure from various sources, and their physical health condition was concerning. We offer several suggestions that could be addressed to improve pilots' physical and mental health. However, more research is needed to compare standard health measures for pilots around the world in order to improve their physical and mental health and contribute to overall aviation safety.


Subject(s)
COVID-19 , Focus Groups , Pilots , Qualitative Research , Humans , Male , Adult , COVID-19/psychology , COVID-19/epidemiology , Pilots/psychology , Middle Aged , Female , Mental Health , Health Status , Adaptation, Psychological , SARS-CoV-2 , Occupational Health
7.
Nat Commun ; 15(1): 3497, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664385

ABSTRACT

Hard carbons are emerging as the most viable anodes to support the commercialization of sodium-ion (Na-ion) batteries due to their competitive performance. However, the hard carbon anode suffers from low initial Coulombic efficiency (ICE), and the ambiguous Na-ion (Na+) storage mechanism and interfacial chemistry fail to give a reasonable interpretation. Here, we have identified the time-dependent ion pre-desolvation on the nanopore of hard carbons, which significantly affects the Na+ storage efficiency by altering the solvation structure of electrolytes. Consummating the pre-desolvation by extending the aging time, generates a highly aggregated electrolyte configuration inside the nanopore, resulting in negligible reductive decomposition of electrolytes. When applying the above insights, the hard carbon anodes achieve a high average ICE of 98.21% in the absence of any Na supplementation techniques. Therefore, the negative-to-positive capacity ratio can be reduced to 1.02 for full cells, which enables an improved energy density. The insight into hard carbons and related interphases may be extended to other battery systems and support the continued development of battery technology.

8.
Angew Chem Int Ed Engl ; 63(15): e202400857, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38356122

ABSTRACT

Photocatalytic oxygen reductive H2O2 production is a promising approach to alternative industrial anthraquinone processes while suffering from the requirement of pure O2 feedstock for practical application. Herein, we report a spaced double hydrogen bond (IC-H-bond) through multi-component Radziszewski reaction in an imidazole poly-ionic-liquid composite (SI-PIL-TiO2) and levofloxacin hydrochloride (LEV) electron donor for highly efficient and selective photocatalytic air reductive H2O2 production. It is found that the IC-H-bond formed by spaced imino (-NH-) group of SI-PIL-TiO2 and carbonyl (-C=O) group of LEV can switch the imidazole active sites characteristic from a covered state to a fully exposed one to shield the strong adsorption of electron donor and N2 in the air, and propel an intenser positive potential and more efficient orbitals binding patterns of SI-PIL-TiO2 surface to establish competitive active sites for selectivity O2 chemisorption. Moreover, the high electron enrichment of imidazole as an active site for the 2e- oxygen reduction ensures the rapid reduction of O2. Therefore, the IC-H-bond enables a total O2 utilization and conversion efficiency of 94.8 % from direct photocatalytic air reduction, achieving a H2O2 production rate of 1518 µmol/g/h that is 16 and 23 times compared to poly-ionic-liquid composite without spaced imino groups (PIL-TiO2) and TiO2, respectively.

9.
BMC Ophthalmol ; 23(1): 458, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968604

ABSTRACT

BACKGROUND: To report the ocular characteristics and management of three cases of retinitis pigmentosa (RP) concurrent primary angle closure glaucoma (PACG). CASE PRESENTATION: Three middle-aged patients presenting with diminished vision, high intraocular pressure (IOP), and typical fundus manifestations of RP were clinically evaluated. The individualized treatment was based on the ocular conditions of each case. A novel genetic alteration in ZNF408 was identified in one patient. Two patients with short-axial eyes received unilateral combined trabeculectomy, cataract surgery, and Irido-zonulo-hyaloid-vitrectomy. One of them had a subluxated lens, managed with a capsular tension ring implantation. Their contralateral eyes, respectively, underwent laser peripheral iridotomy (LPI) and transscleral cyclophotocoagulation. The third patient underwent bilaterally combined laser peripheral iridoplasty, LPI, and medication. Ultimately, all patients achieved the target IOP during a two-year follow-up. CONCLUSION: Young patients with RP may have a risk of developing angle closure glaucoma, and conversely, patients with angle closure glaucoma at younger age should be aware of the presence of RP. Therefore, routine gonioscopy and IOP monitoring are required for RP patients, and detailed fundus examinations are warranted for young PACG patients.


Subject(s)
Glaucoma, Angle-Closure , Laser Therapy , Retinitis Pigmentosa , Middle Aged , Humans , Glaucoma, Angle-Closure/complications , Glaucoma, Angle-Closure/diagnosis , Glaucoma, Angle-Closure/surgery , Iridectomy , Iris/surgery , Treatment Outcome , Retinitis Pigmentosa/complications , Retinitis Pigmentosa/diagnosis , Intraocular Pressure , DNA-Binding Proteins , Transcription Factors
10.
Open Med (Wars) ; 18(1): 20230765, 2023.
Article in English | MEDLINE | ID: mdl-37554148

ABSTRACT

Heroin can cause damage to many human organs, possibly leading to different types of arrhythmias and abnormal electrophysiological function of the heart muscle and the steady state of calcium-ion channels. We explored cardiomyocytes treated with heroin and the effect on calcium-ion channels. Transcriptomics and metabolomics were used to screen for differential genes and metabolite alterations after heroin administration to jointly analyze the effect of heroin on calcium channels in cardiomyocytes. Cardiomyocytes from primary neonatal rats were cultured in vitro and were treated with different concentrations of heroin to observe the changes in morphology and spontaneous beat frequency and rhythm by a patch clamp technique. Transcriptomic studies selected a total of 1,432 differentially expressed genes, 941 upregulated and 491 downregulated genes in rat cardiomyocytes from the control and drug intervention groups. Gene Ontology functional enrichment showed that 1,432 differential genes selected by the two groups were mainly involved in the regulation of the multicellular organismal process, response to external stimulus, myofibril, inflammatory response, muscle system process, cardiac muscle contraction, etc. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that these genes were mainly concentrated in cardiac muscle contraction, osteoclast differentiation, adrenergic signaling in cardiomyocytes, dilated cardiomyopathy, hypertrophic cardiomyopathy, and other important pathways. Metabolomic testing further suggested that cardiomyocyte metabolism was severely affected after heroin intervention. After the treatment with heroin, the L-type calcium channel current I-V curve was up-shifted, the peak value was significantly lower than that of the control group, action potential duration 90 was significantly increased in the action potential, resting potential negative value was lowered, and action potential amplitude was significantly decreased in cardiomyocytes. In this study, heroin could cause morphological changes in primary cardiomyocytes of neonatal rats and electrophysiological function. Heroin can cause myocardial contraction and calcium channel abnormalities, damage the myocardium, and change the action potential and L-type calcium channel.

11.
ACS Cent Sci ; 9(6): 1076-1087, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37396865

ABSTRACT

Sodium-ion batteries (SIBs) have been deemed to be a promising energy storage technology in terms of cost-effectiveness and sustainability. However, the electrodes often operate at potentials beyond their thermodynamic equilibrium, thus requiring the formation of interphases for kinetic stabilization. The interfaces of the anode such as typical hard carbons and sodium metals are particularly unstable because of its much lower chemical potential than the electrolyte. This creates more severe challenges for both anode and cathode interfaces when building anode-free cells to achieve higher energy densities. Manipulating the desolvation process through the nanoconfining strategy has been emphasized as an effective strategy to stabilize the interface and has attracted widespread attention. This Outlook provides a comprehensive understanding about the nanopore-based solvation structure regulation strategy and its role in building practical SIBs and anode-free batteries. Finally, guidelines for the design of better electrolytes and suggestions for constructing stable interphases are proposed from the perspective of desolvation or predesolvation.

12.
Small ; 19(39): e2302776, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37254455

ABSTRACT

Facile synthesis of hierarchically porous metal-organic frameworks (MOFs) with adjustable porosity and high crystallinity attracts great attention yet remains challenging. Herein, a micromolar amount of dye-based modulator (Rhodamine B (RhB)) is employed to easily and controllably tailor the pore size of a Ti-based metal-organic framework (MIL-125-NH2 ). The RhB used in this method is easily removed by washing or photodegradation, avoiding secondary posttreatment. It is demonstrated that the carboxyl functional group and the steric effects of RhB are indispensable for enlarging the pore size of the MIL-125-NH2 . The resulting hierarchically porous MIL-125-NH2 (RH-MIL-125-NH2 ) exhibits optimized adsorption and photocatalytic activity because the newly formed mesopore with defects concurrently facilitates mass transport of guest molecules (toluene) and photogenerated charge separation. This work offers a meaningful basis for the construction of hierarchically porous MOFs and demonstrates the superiority of the hierarchical pore structure for adsorption and heterogeneous catalysis.

13.
Microbiol Spectr ; 11(3): e0098623, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37140432

ABSTRACT

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in eukaryotes. GPI-anchored proteins are widely distributed in fungal plant pathogens, but the specific roles of the GPI-anchored proteins in the pathogenicity of Sclerotinia sclerotiorum, a devastating necrotrophic plant pathogen with a worldwide distribution, remain largely unknown. This research addresses SsGSR1, which encodes an S. sclerotiorum glycine- and serine-rich protein named SsGsr1 with an N-terminal secretory signal and a C-terminal GPI-anchor signal. SsGsr1 is located at the cell wall of hyphae, and deletion of SsGSR1 leads to abnormal cell wall architecture and impaired cell wall integrity of hyphae. The transcription levels of SsGSR1 were maximal in the initial stage of infection, and SsGSR1-deletion strains showed impaired virulence in multiple hosts, indicating that SsGSR1 is critical for the pathogenicity. Interestingly, SsGsr1 targeted the apoplast of host plants to induce cell death that relies on the glycine-rich 11-amino-acid repeats arranged in tandem. The homologs of SsGsr1 in Sclerotinia, Botrytis, and Monilinia species contain fewer repeat units and have lost their cell death activity. Moreover, allelic variants of SsGSR1 exist in field isolates of S. sclerotiorum from rapeseed, and one of the variants lacking one repeat unit results in a protein that exhibits loss of function relative to the cell death-inducing activity and the virulence of S. sclerotiorum. Taken together, our results demonstrate that a variation in tandem repeats provides the functional diversity of GPI-anchored cell wall protein that, in S. sclerotiorum and other necrotrophic pathogens, allows successful colonization of the host plants. IMPORTANCE Sclerotinia sclerotiorum is an economically important necrotrophic plant pathogen and mainly applies cell wall-degrading enzymes and oxalic acid to kill plant cells before colonization. In this research, we characterized a glycosylphosphatidylinositol (GPI)-anchored cell wall protein named SsGsr1, which is critical for the cell wall architecture and the pathogenicity of S. sclerotiorum. Additionally, SsGsr1 induces rapid cell death of host plants that is dependent on glycine-rich tandem repeats. Interestingly, the number of repeat units varies among homologs and alleles of SsGsr1, and such a variation creates alterations in the cell death-inducing activity and the role in pathogenicity. This work advances our understanding of the variation of tandem repeats in accelerating the evolution of a GPI-anchored cell wall protein associated with the pathogenicity of necrotrophic fungal pathogens and prepares the way toward a fuller understanding of the interaction between S. sclerotiorum and host plants.


Subject(s)
Ascomycota , Fabaceae , Virulence , Glycosylphosphatidylinositols/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Plants/metabolism , Cell Wall/metabolism , Cell Death , GPI-Linked Proteins/metabolism , Plant Diseases/microbiology
14.
J Fungi (Basel) ; 8(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422033

ABSTRACT

Heredity and variation are inherent characteristics of species and are mainly reflected in the stability and variation of the genome; the former is relative, while the latter is continuous. However, whether life has both stable genomes and extremely diverse genomes at the same time is unknown. In this study, we isolated Sclerotinia sclerotiorum strains from sclerotium samples in Quincy, Washington State, USA, and found that four single-sclerotium-isolation strains (PB4, PB273, PB615, and PB623) had almost identical genomes to the reference strain 1980 isolated in the west of Nebraska 40 years ago. The genome of strain PB4 sequenced by the next-generation sequencing (NGS) and Pacific Biosciences (PacBio) sequencing carried only 135 single nucleotide polymorphisms (SNPs) and 18 structural variations (SVs) compared with the genome of strain 1980 and 48 SNPs were distributed on Contig_20. Based on data generated by NGS, three other strains, PB273, PB615, and PB623, had 256, 275, and 262 SNPs, respectively, against strain 1980, which were much less than in strain PB4 (532 SNPs) and none of them occurred on Contig_20, suggesting much closer genomes to strain 1980 than to strain PB4. All other strains from America and China are rich in SNPs with a range of 34,391-77,618 when compared with strain 1980. We also found that there were 39-79 SNPs between strain PB4 and its sexual offspring, 53.1% of which also occurred on Contig_20. Our discoveries show that there are two types of genomes in S. sclerotiorum, one is very stable and the other tends to change constantly. Investigating the mechanism of such genome stability will enhance our understanding of heredity and variation.

15.
ACS Nano ; 16(10): 16414-16425, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36240428

ABSTRACT

Heavy reliance on petrochemical-based plastic foams in both industry and society has led to severe plastic pollution (the so-called "white pollution"). In this work, we develop a biodegradable, recyclable, and sustainable cellulose/bentonite (Cel/BT) foam material directly from resource-abundant natural materials (i.e., lignocellulosic biomass and minerals) via ambient drying. The strong resistance to the capillary force-driven structural collapse of the preformed three-dimensional (3D) network during the ambient drying process can be ascribed to the purpose-designed cellulose-bentonite coordination interaction, which provides a practical way for the locally scalable production of foam materials with designed shapes without complex processing and intensive energy consumption. Benefiting from the strong cellulose-bentonite coordination interaction, the Cel/BT foam material demonstrates high mechanical strength and outstanding thermal stability, outperforming commercial plastic polystyrene foam. Furthermore, the Cel/BT foam presents environmental impacts much lower than those of petrochemical-based plastic foams as it can be 100% recycled in a closed-loop recycling process and easily biodegraded in the environment (natural cellulose goes back to the carbon cycle, and bentonite minerals return to the geological cycle). This study demonstrates an energy-efficient ambient drying approach for the local and scalable production of an all-natural cellulose/bentonite foam for sustainable packaging, buildings, and beyond, presenting great potential in response to "white pollution" and resource shortage.


Subject(s)
Bentonite , Cellulose , Cellulose/chemistry , Polystyrenes
16.
Proc Natl Acad Sci U S A ; 119(40): e2210203119, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36161916

ABSTRACT

Hard carbon is regarded as the most promising anode material for sodium-ion (Na-ion) batteries, owing to its advantages of high abundance, low cost, and low operating potential. However, the rate capability and cycle life span of hard carbon anodes are far from satisfactory, severely hindering its industrial applications. Here, we demonstrate that the desolvation process defines the Na-ion diffusion kinetics and the formation of a solid electrolyte interface (SEI). The 3A zeolite molecular sieve film on the hard carbon is proposed to develop a step-by-step desolvation pathway that effectively reduces the high activation energy of the direct desolvation process. Moreover, step-by-step desolvation yields a thin and inorganic-dominated SEI with a lower activation energy for Na+ transport. As a result, it contributes to greatly improved power density and cycling stability for both ester and ether electrolytes. When the above insights are applied, the hard carbon anode achieves the longest life span and minimum capacity fading rate at all evaluated current densities. Moreover, with the increase in current densities, an improved plateau capacity ratio is observed. This step-by-step desolvation strategy comprehensively enhances various properties of hard carbon anodes, which provides the possibility of building practical Na-ion batteries with high power density, high energy density, and durability.

17.
Chem Commun (Camb) ; 58(72): 10036-10039, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35983883

ABSTRACT

Here, a novel transformed CdO with low coordination and N doping environment was simply synthesized through the involvement of the target molecule tetracycline (TC). The results showed that the shedding of surface hydroxyl groups led to a low coordination environment, and N doping formed a new doping energy level, which increased the charge density and promoted the migration and separation of photo-generated carriers. Its photocatalytic performance was 4.32 times higher than that of hydroxy-rich CdO and the selectivity coefficient was 4.8. Combined with theoretical calculation and in situ Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) analysis, the significant improvement of selectivity was due to the interaction of the doped N atom with the methyl carbon in TC. This work provided a new idea for the simultaneous construction of low coordination environment and N-doped materials for efficient selective photocatalysis.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Carbon , Catalysis
18.
Adv Mater ; 34(37): e2200677, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35901291

ABSTRACT

Changing the solvation sheath of hydrated Zn ions is an effective strategy to stabilize Zn anodes to obtain a practical aqueous Zn-ion battery. However, key points related to the rational design remain unclear including how the properties of the solvent molecules intrinsically regulate the solvated structure of the Zn ions. This study proposes the use of a stability constant (K), namely, the equilibrium constant of the complexation reaction, as a universal standard to make an accurate selection of ligands in the electrolyte to improve the anode stability. It is found that K greatly impacts the corrosion current density and nucleation overpotential. Following this, ethylene diamine tetraacetic acid with a superhigh K effectively suppresses Zn corrosion and induces uniform Zn-ion deposition. As a result, the anode has an excellent stability of over 3000 h. This work presents a general principle to stabilize anodes by regulating the solvation chemistry, guiding the development of novel electrolytes for sustainable aqueous batteries.

19.
Biol Proced Online ; 24(1): 10, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35850645

ABSTRACT

OBJECTIVE: The effects of Otubain-2 (OTUB2) on the proliferation, invasion, and migration of esophageal squamous cell carcinoma (ESCC) were investigated by interfering with OTUB2 expression. METHODS: Bioinformatics analysis was used to analyze OTUB2 expression in esophageal carcinoma and interactions between OTUB2 and YAP1/TAZ. Paraffin-embedded ESCC tissues (n = 183) were selected for immunohistochemical staining to detect OTUB2, YAP1, TAZ, CTGF and their relationship with clinicopathological parameters, then the survival prognosis of ESCC patients was analyzed. Immunofluorescence, western blotting, and qRT-PCR were used to evaluate OTUB2 in ESCC cell lines. Cell lines with the highest expression of OTUB2 were transfected with lentivirus to knockdown OTUB2 levels. Changes in KYSE150 cell proliferation, migration, and invasion were measured using CCK-8, wound healing, and clone formation assays. The Transwell test and flow cytometry identified OTUB2 targets and explored roles and mechanisms involved in ESCC. Effects of OTUB2 on YAP1/TAZ signaling were also observed. RESULTS: Bioinformatics analysis revealed OTUB2 was highly expressed in esophageal cancer and was associated with YAP1/TAZ. Immunohistochemistry showed that OTUB2 expression was increased in ESCC samples compared to parcancerous tissue. YAP1 and TAZ were higher expression in ESCC tissues, mainly localized in the nucleus. Compared with controls, the proliferation, migration, and invasion ability of KYSE150 cells after OTUB2 knockdown were significantly reduced (P < 0.05). The protein expression levels of YAP1, TAZ and CTGF decreased after knocking down the expression of OTUB2 (P < 0.05). OTUB2 knockdown in ESCC cell lines suppressed YAP1/TAZ signaling. CONCLUSIONS: OTUB2 regulated the protein expression of YAP1/TAZ to promote cell proliferation, migration, invasion, and tumor development. Therefore, OTUB2 may represent a biomarker for ESCC and a potential target for ESCC treatment.

20.
Angew Chem Int Ed Engl ; 61(30): e202206340, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35607934

ABSTRACT

The sodium (Na)-metal batteries hold great promise as a sustainable technology owing to the high element abundance and low cost. However, the generally used carbonate electrolytes remain highly reactive towards Na metal, leading to flammable gas evolution. Here, we propose an electrolyte sieving strategy to separate anion-mediated ion-pairs from dilute electrolytes by introducing a 3A zeolite molecular sieve film. The anion-mediated ion-pair firstly weakens the electron-withdrawing property of the cation, which effectively suppresses the gassing. In addition, the sieved electrolyte promotes the formation of robust inorganic-dominated solid electrolyte interphases. Therefore, it contributes to stable Na plating/stripping in Na|Al half cells with Coulombic efficiency maintaining at 98.5 % and a long service life of 800 cycles in full cells. Moreover, the electrode stability is well preserved even under harsh conditions of high temperature and ester-based electrolytes with higher reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL