Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Article in English | MEDLINE | ID: mdl-38843063

ABSTRACT

This brief studies the hyper-exponential stabilization of neural networks (NNs) by event-triggered impulsive control, where the impulse instants are determined by the event-triggered conditions. In the presence of actuation delay, an event-triggered impulsive control scheme is devised. For reducing the sampling task of continuous detection, a periodic-detection scheme is also introduced. Within these frameworks, the occurrence of Zeno behavior is rigorously precluded, and some criteria are formulated to achieve the stabilization of the system with a hyper-exponential convergence rate. Moreover, a numerical simulation is provided to elucidate the validity of the theoretical findings.

2.
Int J Biol Macromol ; 275(Pt 1): 133514, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944076

ABSTRACT

Pulmonary hypertension (PH) is a fatal disease with no existing curative drugs. NF-E2-related factor 2 (NRF2) a pivotal molecular in cellular protection, was investigated in PH models to elucidate its role in regulating abnormal phenotypes in pulmonary artery cells. We examined the expression of NRF2 in PH models and explored the role of NRF2 in regulating abnormal phenotypes in pulmonary artery cells. We determined the expression level of NRF2 in lung tissues of PH model decreased significantly. We found that NRF2 was reduced in rat pulmonary artery endothelial cells (rPAEC) under hypoxia, while it was overexpressed in rat pulmonary artery smooth muscle cells (rPASMC) under hypoxia. Next, the results showed that knockdown NRF2 in rPAEC promoted endothelial-mesenchymal transformation and upregulated reactive oxygen species level. After the rPASMC was treated with siRNA or activator, we found that NRF2 could accelerate cell migration by affecting MMP2/3/7, and promote cell proliferation by regulating PDGFR/ERK1/2 and mTOR/P70S6K pathways. Therefore, the study has shown that the clinical application of NRF2 activator in the treatment of pulmonary hypertension may cause side effects of promoting the proliferation and migration of rPASMC. Attention should be paid to the combination of NRF2 activators.

3.
Article in English | MEDLINE | ID: mdl-38862429

ABSTRACT

DNA sequencers have become increasingly important research and diagnostic tools over the past 20 years. In this study, we developed a single-molecule desktop sequencer, GenoCare 1600 (GenoCare), which utilizes amplification-free library preparation and two-color sequencing-by-synthesis chemistry, making it more user-friendly compared with previous single-molecule sequencing platforms for clinical use. Using the GenoCare platform, we sequenced an Escherichia coli standard sample and achieved a consensus accuracy exceeding 99.99%. We also evaluated the sequencing performance of this platform in microbial mixtures and coronavirus disease 2019 (COVID-19) samples from throat swabs. Our findings indicate that the GenoCare platform allows for microbial quantitation, sensitive identification of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and accurate detection of virus mutations, as confirmed by Sanger sequencing, demonstrating its remarkable potential in clinical application.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Escherichia coli/genetics , Mutation
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124411, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38728851

ABSTRACT

The advancement of biological imaging techniques critically depends on the development of novel near-infrared (NIR) fluorescent probes. In this study, we introduce a designed NIR fluorescent probe, NRO-ßgal, which exhibits a unique off-on response mechanism to ß-galactosidase (ß-gal). Emitting a fluorescence peak at a wavelength of 670 nm, NRO-ßgal showcases a significant Stokes shift of 85 nm, which is indicative of its efficient energy transfer and minimized background interference. The probe achieves a remarkably low in vitro detection limit of 0.2 U/L and demonstrates a rapid response within 10 min, thereby underscoring its exceptional sensitivity, selectivity, and operational swiftness. Such superior analytical performance broadens the horizon for its application in intricate biological imaging studies. To validate the practical utility of NRO-ßgal in bio-imaging, we employed ovarian cancer cell and mouse models, where the probe's efficacy in accurately delineating tumor cells was examined. The results affirm NRO-ßgal's capability to provide sharp, high-contrast images of tumor regions, thereby significantly enhancing the precision of surgical tumor resection. Furthermore, the probe's potential for real-time monitoring of enzymatic activity in living tissues underscores its utility as a powerful tool for diagnostics in oncology and beyond.


Subject(s)
Fluorescent Dyes , Ovarian Neoplasms , beta-Galactosidase , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Female , beta-Galactosidase/metabolism , Animals , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology , Humans , Cell Line, Tumor , Mice , Spectroscopy, Near-Infrared/methods , Optical Imaging/methods , Mice, Nude , Limit of Detection , Spectrometry, Fluorescence
5.
Clin Transl Oncol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776034

ABSTRACT

BACKGROUND: The aim of this study is to explore the prognostic value and immune signature of ITGB4 expression in lung adenocarcinoma (LUAD) brain metastasis. METHODS: We comprehensively screened genes associated with LUAD brain metastasis by integrating datasets from the GEO database and TMT-based quantitative proteomics profiles. Univariable survival and Multivariate Cox analysis was used to compare several clinical characteristics with survival, and a risk model was constructed. The biological functions were explored via GO and KEGG analysis. Gene set enrichment analysis (GSEA) was performed using the TCGA dataset. In addition, we use TIMER to explore the collection of ITGB4 Expression and Immune Infiltration Level in LUAD. The ability of ITGB4 to regulate tumor metastasis was further assessed by migration, invasion assay and Western-blot in H1975-BrM4 cells. RESULTS: We found that ITGB4 was the only gene with high clinical diagnostic and prognostic value in LUAD. Enrichment analysis indicated that ITGB4 is associated with brain metastasis, infiltration of immune cells, and the response to immunotherapy. ITGB4 expression can effectively predict the outcomes of patients with LUAD who are receiving anti-PD-1 therapy. ITGB4 knockdown inhibited the invasion, migration of H1975-BrM4 brain metastasis cells, as well as epithelial-mesenchymal transition (EMT) abilities. The heightened expression of ITGB4 protein was shown to promote EMT and enhance the metastatic potential. ITGB4 promotes the progression in H1975-BrM4 cells via MEK/ERK signaling pathway. CONCLUSIONS: Our findings indicate that the expression of ITGB4 is linked to the occurrence of brain metastasis and infiltration of immune cells, suggesting that ITGB4 might be a clinical treatment target for LUAD.

6.
Org Lett ; 26(13): 2564-2568, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38514236

ABSTRACT

An efficient catalytic asymmetric Michael-type reaction of azonaphthalenes with 5-aminoisoxazoles has been developed. The reaction was based on the utilization of a chiral phosphoric acid as the catalyst, delivering a large panel of axially chiral heterobiaryl diamines in generally good yields with excellent enantioselectivities. The gram-scale reaction and postmodification of the chiral product demonstrated their potentials in the synthesis of chiral catalysts and ligands. This approach not only provides a useful method for the construction of pentatomic heterobiaryl scaffolds but also offers new members to the axially chiral diamine family with promising applications in synthetic and medicinal chemistry.

7.
Article in English | MEDLINE | ID: mdl-38376541

ABSTRACT

Ferroptosis, characterized by lipid peroxidation, plays a significant role in the pathogenesis of acute pancreatitis (AP). While sterol O-acyltransferase 2 (Soat2) is known for its crucial regulatory role in cholesterol homeostasis, its involvement in the development of AP remains unreported. We conducted this study to identify the pivotal role of Soat2 in AP using transcriptomic databases. Subsequently, we confirmed its alterations through both in vitro and in vivo experimental models. Furthermore, we performed intervention with the Soat2 inhibitor avasimibe to evaluate pancreatic tissue pathology and serum enzymatic levels and observe inflammatory cell infiltration through immunohistochemistry. Additionally, changes in indicators related to ferroptosis were also observed. The results showed that in the AP mouse model, the protein and mRNA levels of Soat2 were significantly increased. Following avasimibe administration, there was a decrease in serum amylase levels, reduction in pancreatic tissue pathological damage, and attenuation of inflammatory cell infiltration. Furthermore, avasimibe administration resulted in downregulation of ferroptosis-related indicators. In conclusion, our findings suggest that the Soat2 inhibitor avasimibe protects against AP in mice through inhibition of the ferroptosis.

8.
Article in English | MEDLINE | ID: mdl-38178679

ABSTRACT

Protein/peptide drugs are extensively used to treat various chronic and serious diseases. The short half-life in vivo of protein and peptide as therapeutics drug limit the realization of complete effects. Encapsulating drugs in microspheres can slow the speed of drug release and prolong the efficacy of drugs. The solvent evaporation method is widely used to prepare protein/peptide microspheres because of its facile operation and minimal equipment requirements. This method has several challenges in the lower encapsulation efficiency, fluctuant release profiles and the stabilization of protein/peptides, which researchers believe may be solved by adjusting the preparation parameter or formulation of microspheres. The article discusses the formulation parameters that govern the preparation of protein/peptide-loaded microspheres by the solvent evaporation method, which provides an overview of the current promising strategies for solvent evaporation for protein/peptide microspheres. The article takes parameter evaluation as the framework, facilitating subsequent researchers to quickly find possible solutions when encountering problems.

9.
Cell Res ; 34(2): 140-150, 2024 02.
Article in English | MEDLINE | ID: mdl-38182887

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Receptors, LDL , Animals , Humans , Mice , Endocytosis , Glycoproteins/metabolism , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Hemorrhagic Fever, Crimean/prevention & control , Receptors, LDL/metabolism , Virus Internalization
10.
Article in English | MEDLINE | ID: mdl-38128380

ABSTRACT

Growth is an important economically trait for aquatic animals. The popularity of farmed channel catfish (Ictalurus punctatus) in China has recently surged, prompting a need for research into the genetic mechanisms that drive growth and development to expedite the selection of fast-growing variants. In this study, the brain, liver and muscle transcriptomes of channel catfish between fast-growing and slow-growing groups were analyzed using RNA-Seq. Totally, 63, 110 and 86 differentially expressed genes (DEGs) were from brain, liver and muscle tissues. DEGs are primarily involved in growth, development, metabolism and immunity, which are related to the growth regulation of channel catfish, such as growth hormone receptor b (ghrb), fibroblast growth factor receptor 4 (fgfr4), bone morphogenetic protein 1a (bmp1a), insulin-like growth factor 2a (igf2a), collagen, type I, alpha 1a (col1a1a), acyl-CoA synthetase long chain family member 2 (acsl2) and caveolin 1 (cav1). This study advances our knowledge of the genetic mechanisms accounting for differences in growth rate and offers crucial gene resources for future growth-related molecular breeding programs in channel catfish.


Subject(s)
Ictaluridae , Animals , Ictaluridae/genetics , Transcriptome , Gene Expression Profiling , Liver , Muscles , Brain
11.
Org Lett ; 25(46): 8263-8268, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37947421

ABSTRACT

We, for the first time, disclosed a simple and efficient strategy for the late-stage functionalization of primary sulfonamides by diazotization, leading to sulfonyl chlorides, sulfonates, and complex sulfonamides. This protocol obviates the requirement for the prefunctionalization of sulfonamides. Its applicability is exemplified by the late-stage functionalization of sulfonamide-type drugs.

12.
Nat Commun ; 14(1): 7686, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001108

ABSTRACT

Phonon polaritons are promising for infrared applications due to a strong light-matter coupling and subwavelength energy confinement they offer. Yet, the spectral narrowness of the phonon bands and difficulty to tune the phonon polariton properties hinder further progress in this field. SrTiO3 - a prototype perovskite oxide - has recently attracted attention due to two prominent far-infrared phonon polaritons bands, albeit without any tuning reported so far. Here we show, using cryogenic infrared near-field microscopy, that long-propagating surface phonon polaritons are present both in bare SrTiO3 and in LaAlO3/SrTiO3 heterostructures hosting a two-dimensional electron gas. The presence of the two-dimensional electron gas increases dramatically the thermal variation of the upper limit of the surface phonon polariton band due to temperature dependent polaronic screening of the surface charge carriers. Furthermore, we demonstrate a tunability of the upper surface phonon polariton frequency in LaAlO3/SrTiO3 via electrostatic gating. Our results suggest that oxide interfaces are a new platform bridging unconventional electronics and long-wavelength nanophotonics.

13.
Front Immunol ; 14: 1277161, 2023.
Article in English | MEDLINE | ID: mdl-38035100

ABSTRACT

Acute respiratory distress syndrome (ARDS) is an acute diffuse inflammatory lung injury characterized by the damage of alveolar epithelial cells and pulmonary capillary endothelial cells. It is mainly manifested by non-cardiogenic pulmonary edema, resulting from intrapulmonary and extrapulmonary risk factors. ARDS is often accompanied by immune system disturbance, both locally in the lungs and systemically. As a common heterogeneous disease in critical care medicine, researchers are often faced with the failure of clinical trials. Latent class analysis had been used to compensate for poor outcomes and found that targeted treatment after subgrouping contribute to ARDS therapy. The subphenotype of ARDS caused by sepsis has garnered attention due to its refractory nature and detrimental consequences. Sepsis stands as the most predominant extrapulmonary cause of ARDS, accounting for approximately 32% of ARDS cases. Studies indicate that sepsis-induced ARDS tends to be more severe than ARDS caused by other factors, leading to poorer prognosis and higher mortality rate. This comprehensive review delves into the immunological mechanisms of sepsis-ARDS, the heterogeneity of ARDS and existing research on targeted treatments, aiming to providing mechanism understanding and exploring ideas for accurate treatment of ARDS or sepsis-ARDS.


Subject(s)
Pulmonary Edema , Respiratory Distress Syndrome , Sepsis , Humans , Endothelial Cells , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Lung , Sepsis/drug therapy
14.
Front Microbiol ; 14: 1287271, 2023.
Article in English | MEDLINE | ID: mdl-38033588

ABSTRACT

Background: Patients with inflammatory bowel disease (IBD) have a higher prevalence of depression. Gut microbiota dysbiosis plays an important role in IBD and depression. However, few studies have explored the characteristic microbiota of patients with IBD and depression (IBDD), or their role in IBDD. Methods: We performed deep metagenomic sequencing and 16S rDNA quantitative PCR to characterise the gut microbial communities of patients with IBDD and patients with IBD without depression (IBDND). We then assessed the effect of the microbiota on colitis and depression in mouse models of dextran sulfate sodium salt (DSS)-induced colitis and lipopolysaccharide (LPS)-induced depression. Furthermore, liquid chromatography-tandem mass spectrometry was used to analyse the microbiota-derived metabolites involved in gut-brain communication. Evans Blue tracer dye was used to assess blood-brain barrier (BBB) permeability. Results: Our results showed that the faecal abundance of Bacteroides vulgatus (B. vulgatus) was lower in patients with IBDD than in those with IBDND. In the DSS-induced colitis mouse model, the B. vulgatus group showed a significantly lower disease activity index score, lesser weight loss, and longer colon length than the DSS group. Moreover, B. vulgatus relieved depression-like behaviour in the DSS-induced colitis mouse model and in the LPS-induced depression mouse model. Furthermore, the key metabolite of B. vulgatus was p-hydroxyphenylacetic acid (4-HPAA), which was found to relieve intestinal inflammation and alleviate depression-like behaviours in mouse models. By increasing the expression of the tight junction protein claudin-5 in the vascular endothelium of the BBB, B. vulgatus and 4-HPAA play critical roles in gut-brain communication. Conclusion: B. vulgatus and B. vulgatus-derived 4-HPAA ameliorated intestinal inflammation and relieved depressive symptoms through the gut-brain axis. Thus, administration of B. vulgatus or 4-HPAA supplementation is a promising therapeutic strategy for treating IBD, particularly IBDD.

15.
Front Immunol ; 14: 1286667, 2023.
Article in English | MEDLINE | ID: mdl-37868958

ABSTRACT

Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is increasingly recognized as a pivotal factor influencing its onset and progression. Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging from anti-inflammatory and immune-regulatory functions to gut-microbiota modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of indigestible dietary fiber fermentation by gut microbiota, have strong anti-inflammatory properties and are seen as key protective factors against IBD. Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and ω-6 polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and ω-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators derived from polyunsaturated fatty acids serve as bioactive molecules, influencing immune cell functions and offering both pro-inflammatory and anti-inflammatory benefits. Recent research has also highlighted the potential of medium- and very long-chain fatty acids in modulating inflammation, mucosal barriers, and gut microbiota in IBD. Given these insights, dietary intervention and supplementation with short-chain fatty acids are emerging as potential therapeutic strategies for IBD. This review elucidates the impact of various fatty acids and lipid mediators on IBD and delves into potential therapeutic avenues stemming from these compounds.


Subject(s)
Fatty Acids, Omega-3 , Inflammatory Bowel Diseases , Humans , Fatty Acids , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/etiology , Fatty Acids, Volatile/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Fatty Acids, Omega-3/therapeutic use
16.
J Integr Plant Biol ; 65(12): 2569-2586, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37861067

ABSTRACT

Foxtail millet (Setaria italica), a vital drought-resistant crop, plays a significant role in ensuring food and nutritional security. However, its drought resistance mechanism is not fully understood. N6 -methyladenosine (m6 A) modification of RNA, a prevalent epi-transcriptomic modification in eukaryotes, provides a binding site for m6 A readers and affects plant growth and stress responses by regulating RNA metabolism. In this study, we unveiled that the YT521-B homology (YTH) family gene SiYTH1 positively regulated the drought tolerance of foxtail millet. Notably, the siyth1 mutant exhibited reduced stomatal closure and augmented accumulation of excessive H2 O2 under drought stress. Further investigations demonstrated that SiYTH1 positively regulated the transcripts harboring m6 A modification related to stomatal closure and reactive oxygen species (ROS) scavenging under drought stress. SiYTH1 was uniformly distributed in the cytoplasm of SiYTH1-GFP transgenic foxtail millet. It formed dynamic liquid-like SiYTH1 cytosol condensates in response to drought stress. Moreover, the cytoplasmic protein SiYTH1 was identified as a distinct m6 A reader, facilitating the stabilization of its directly bound SiARDP and ROS scavenging-related transcripts under drought stress. Furthermore, natural variation analysis revealed SiYTH1AGTG as the dominant allele responsible for drought tolerance in foxtail millet. Collectively, this study provides novel insights into the intricate mechanism of m6 A reader-mediated drought tolerance and presents a valuable genetic resource for improving drought tolerance in foxtail millet breeding.


Subject(s)
Drought Resistance , Setaria Plant , Reactive Oxygen Species/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Setaria Plant/metabolism , Plant Proteins/metabolism , Plant Breeding , Gene Expression Regulation, Plant/genetics , Stress, Physiological/genetics
17.
Front Oncol ; 13: 1271370, 2023.
Article in English | MEDLINE | ID: mdl-37849795

ABSTRACT

Background: Pancreatic cancer is renowned for its elevated incidence and mortality rates on a global scale. The disease burden of pancreatic cancer is anticipated to increase, particularly in Asia, due to its vast and rapidly aging population. Methods: Data from the Global Burden of Disease 2019 were analyzed for pancreatic cancer burden across 52 countries in Asia, including the incidence, mortality, and disability-adjusted life years (DALY) for pancreatic cancer, with a focus on risk factors such as high body mass index (BMI), elevated fasting plasma glucose, and smoking. We applied the Estimated Annual Percentage Change, the Age-Period-Cohort model, and decomposition analysis to evaluate incidence trends and effects. Results: From 1990 to 2019, both incidence and mortality rates of pancreatic cancer in Asia significantly increased, with an average annual standardized incidence rate change of 1.73%. Males consistently exhibited higher rates than females, with smoking as a key risk factor. Central Asia reported the highest rates, and South Asia the lowest. The incidence rose with age, peaking in those aged 70~74. The disease burden increased in all age groups, particularly in populations aged 55 and above, representing 84.41% of total cases in 2019, up from 79.01% in 1990. Pancreatic cancer ranked the fifth in incidence among six major gastrointestinal tumors but presented a significant growth rate of mortality and DALY. Conclusion: With the growing, aging population in Asia, the pancreatic cancer burden is projected to escalate, bringing a significant public health challenge. Hence, comprehensive public health strategies emphasizing early detection, risk modification, and optimized treatment of pancreatic cancer are imperative.

18.
EBioMedicine ; 96: 104790, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37708700

ABSTRACT

BACKGROUND: Severe community-acquired pneumonia (SCAP) results in high mortality as well as massive economic burden worldwide, yet limited knowledge of the bio-signatures related to prognosis has hindered the improvement of clinical outcomes. Pathogen, microbes and host are three vital elements in inflammations and infections. This study aims to discover the specific and sensitive biomarkers to predict outcomes of SCAP patients. METHODS: In this study, we applied a combined metagenomic and transcriptomic screening approach to clinical specimens gathered from 275 SCAP patients of a multicentre, prospective study. FINDINGS: We found that 30-day mortality might be independent of pathogen category or microbial diversity, while significant difference in host gene expression pattern presented between 30-day mortality group and the survival group. Twelve outcome-related clinical characteristics were identified in our study. The underlying host response was evaluated and enrichment of genes related to cell activation, immune modulation, inflammatory and metabolism were identified. Notably, omics data, clinical features and parameters were integrated to develop a model with six signatures for predicting 30-day mortality, showing an AUC of 0.953 (95% CI: 0.92-0.98). INTERPRETATION: In summary, our study linked clinical characteristics and underlying multi-omics bio-signatures to the differential outcomes of patients with SCAP. The establishment of a comprehensive predictive model will be helpful for future improvement of treatment strategies and prognosis with SCAP. FUNDING: National Natural Science Foundation of China (No. 82161138018), Shanghai Municipal Key Clinical Specialty (shslczdzk02202), Shanghai Top-Priority Clinical Key Disciplines Construction Project (2017ZZ02014), Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100).

19.
ACS Omega ; 8(17): 15217-15228, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37151561

ABSTRACT

Inflammatory bowel disease (IBD), which encompasses Crohn's disease and ulcerative colitis, has a complicated etiology that might be brought on by metabolic dysbiosis. Previous metabonomic studies have found a correlation between decreased azelaic acid (AzA) and IBD. Herein, data from the Metabolomics Workbench showed that the content of AzA decreased in IBD patients (PR000639) and dextran sulfate sodium (DSS)-induced mice (PR000837). The effects of AzA on IBD were then examined using a DSS-induced mouse model, and the results demonstrated that AzA alleviated clinical activity, decreased pro-inflammatory cytokine production, and reduced CD4+CD25+Foxp3+Treg percentages in mesenteric lymph nodes. Through network pharmacology analysis, we discovered 99 candidate IBD-associated genes that are potentially regulated by AzA. After the enrichment analysis of the candidate genes, the renin-angiotensin system (RAS) pathway was one of the most substantially enriched pathways. Additionally, AzA reversed the increased expression of important RAS components (ACE, ACE2, and MAS1L) following DSS induction, suggesting that AzA exerts therapeutic effects possibly via the RAS pathway. This study suggests that AzA may be a promising drug for treating IBD.

20.
Org Biomol Chem ; 21(16): 3317-3322, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37009653

ABSTRACT

A variety of azaheterocycle-fused piperidines and pyrrolidines bearing CF3 and CHF2 functionalities were obtained using CF3SO2Na and CHF2SO2Na by visible light photocatalysis. This protocol involves a radical cascade cyclization via tandem tri- and difluoromethylation-arylation of pendent unactivated alkenes. Benzimidazole, imidazole, theophylline, purine, and indole serve as applicable anchors, thereby enriching the structural diversity of piperidine and pyrrolidine derivatives. This method features mild, additive-free and transition metal-free conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...