Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Data ; 11(1): 463, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714688

Adverse perinatal factors can interfere with the normal development of the brain, potentially resulting in long-term effects on the comprehensive development of children. Presently, the understanding of cognitive and neurodevelopmental processes under conditions of adverse perinatal factors is substantially limited. There is a critical need for an open resource that integrates various perinatal factors with the development of the brain and mental health to facilitate a deeper understanding of these developmental trajectories. In this Data Descriptor, we introduce a multicenter database containing information on perinatal factors that can potentially influence children's brain-mind development, namely, periCBD, that combines neuroimaging and behavioural phenotypes with perinatal factors at county/region/central district hospitals. PeriCBD was designed to establish a platform for the investigation of individual differences in brain-mind development associated with perinatal factors among children aged 3-10 years. Ultimately, our goal is to help understand how different adverse perinatal factors specifically impact cognitive development and neurodevelopment. Herein, we provide a systematic overview of the data acquisition/cleaning/quality control/sharing, processes of periCBD.


Brain , Child Development , Child , Child, Preschool , Humans , Brain/growth & development , Brain/diagnostic imaging , China , Cognition , Databases, Factual , Neuroimaging
3.
J Hazard Mater ; 431: 128584, 2022 06 05.
Article En | MEDLINE | ID: mdl-35359100

The potential risk of various contaminants in water has recently attracted public attention. Biochars and modified biochars have been widely developed for environmental remediation. Metal and heteroatom co-doped biochar composites (MHBCs) quickly caught the interest of researchers with more active sites and higher affinity for contaminants compared to single-doped biochar by metal or heteroatoms. This study provides a comprehensive review of MHBCs in wastewater decontamination. Firstly, the main fabrication methods of MHBCs were external doping and internal doping, with external doping being the most common. Secondly, the applications of MHBCs as adsorbents and catalysts in water treatment were introduced emphatically, which mainly included the removal of metals, antibiotics, dyes, pesticides, phenols, and other organic contaminants. Thirdly, the removal mechanisms of contaminants by MHBCs were deeply discussed in adsorption, oxidation and reduction, and degradation. Furthermore, the influencing factors for the removal of contaminants by MHBCs were also summarized, including the physicochemical properties of MHBCs, and environmental variables of pH and co-existing substance. Finally, futural challenges of MHBCs are proposed in the leaching toxicity of metal from MHBCs, the choice of heteroatoms on the fabrication for MHBCs, and the application in the composite system and soil remediation.


Charcoal , Environmental Restoration and Remediation , Adsorption , Charcoal/chemistry , Metals
4.
Chemosphere ; 301: 134563, 2022 Aug.
Article En | MEDLINE | ID: mdl-35413365

In this study, a Fenton-like system was constructed by CaO2 and nano-Fe3O4 in the co-composting system of straw and sediment. Its effect on the passivation of heavy metals and the evolution of microbial community were investigated. The results showed that the establishment of CaO2-Fenton-like system increased the residual Cu and residual Zn by 27.62% and 16.80%, respectively. In addition, the CaO2-Fenton-like system facilitated the formation of humic acid (HA) up to 20.84 g·kg-1. Redundancy analysis (RDA) showed that the CaO2-Fenton-like system accelerated bacterial community succession and promoted the passivation of Cu and Zn. Structural equation models (SEMs) indicated that Fenton reaction affected Cu and Zn passivation by affecting pH, bacterial communities, and HA. This study shows that the CaO2-Fenton-like system could promote the application of composting in the remediation of heavy metals contamination in sediment.


Composting , Metals, Heavy , Microbiota , Bacteria , Humic Substances/analysis , Metals, Heavy/analysis , Soil
5.
Chemosphere ; 299: 134347, 2022 Jul.
Article En | MEDLINE | ID: mdl-35306052

This paper investigated the effects of attapulgite addition on the physicochemical processes, heavy metal transformation, and microbial community during the composting of agricultural wastes and sediment. In addition, the correlation between environmental factors, heavy metals (HMs), and microbial community was also assessed by redundancy analysis (RDA). The results showed that pile B with attapulgite addition entered the thermophilic phase earlier and lasted longer than pile A as the control group. The reduction in the bioavailability of HMs (Cr, Cd, and Zn) was also greater in pile B, and the passivation of HMs was ranked as Cd > Zn > Cr. The relative abundance of phylum Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria was the highest throughout the composting process. Furthermore, the RDA showed that the bacterial community composition was significantly correlated with temperature and C/N ratio in pile A, while significantly correlated with organic matter and pH in pile B. And the addition of attapulgite facilitated the conversion of HMs into more stable fractions by Pseudomonas. The study would provide a reference for the application of attapulgite to remediate the river sediment polluted by HMs.


Composting , Metals, Heavy , Microbiota , Cadmium/analysis , Magnesium Compounds , Metals, Heavy/analysis , Rivers , Silicon Compounds , Soil
6.
Bioresour Technol ; 333: 125170, 2021 Aug.
Article En | MEDLINE | ID: mdl-33932807

The Fenton-like process was established by Fe3O4 nanomaterials (NMs) and Phanerochaete chrysosporium or oxalate, and applied to the co-composting of rice straw and sediment to study its effect on the formation of humic substance and the bioavailability of Cd, Cu, and Pb. Results shown that the application of Fenton-like process significantly promoted the passivation of Cd and Cu, while not shown obvious enhancement for Pb. The decrease of exchangeable fraction Cd (EXC-Cd) and the humic acid (HA) content in pile B with Fe3O4 NMs and oxalate were highest, which were 22.35% and 20.3 g/kg, respectively. Redundancy analyses (RDA) manifested that the Fenton-like process enhanced the influence of humus substance on the bioavailability of Cd, Cu, and Pb. Excitation-emission matrix (EEM) fluorescence spectra analysis suggested that Fenton-like process could obviously enhance the generation of humic substance. This research provides a new perspective and way for composting to remediate heavy metals pollution.


Composting , Metals, Heavy , Oryza , Humic Substances/analysis , Metals, Heavy/analysis , Soil
...