Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 989
Filter
1.
Front Immunol ; 15: 1398990, 2024.
Article in English | MEDLINE | ID: mdl-39086489

ABSTRACT

Background: More and more evidence supports the association between myocardial infarction (MI) and osteoarthritis (OA). The purpose of this study is to explore the shared biomarkers and pathogenesis of MI complicated with OA by systems biology. Methods: Gene expression profiles of MI and OA were downloaded from the Gene Expression Omnibus (GEO) database. The Weighted Gene Co-Expression Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to identify the common DEGs. The shared genes related to diseases were screened by three public databases, and the protein-protein interaction (PPI) network was built. GO and KEGG enrichment analyses were performed on the two parts of the genes respectively. The hub genes were intersected and verified by Least absolute shrinkage and selection operator (LASSO) analysis, receiver operating characteristic (ROC) curves, and single-cell RNA sequencing analysis. Finally, the hub genes differentially expressed in primary cardiomyocytes and chondrocytes were verified by RT-qPCR. The immune cell infiltration analysis, subtypes analysis, and transcription factors (TFs) prediction were carried out. Results: In this study, 23 common DEGs were obtained by WGCNA and DEGs analysis. In addition, 199 common genes were acquired from three public databases by PPI. Inflammation and immunity may be the common pathogenic mechanisms, and the MAPK signaling pathway may play a key role in both disorders. DUSP1, FOS, and THBS1 were identified as shared biomarkers, which is entirely consistent with the results of single-cell RNA sequencing analysis, and furher confirmed by RT-qPCR. Immune infiltration analysis illustrated that many types of immune cells were closely associated with MI and OA. Two potential subtypes were identified in both datasets. Furthermore, FOXC1 may be the crucial TF, and the relationship of TFs-hub genes-immune cells was visualized by the Sankey diagram, which could help discover the pathogenesis between MI and OA. Conclusion: In summary, this study first revealed 3 (DUSP1, FOS, and THBS1) novel shared biomarkers and signaling pathways underlying both MI and OA. Additionally, immune cells and key TFs related to 3 hub genes were examined to further clarify the regulation mechanism. Our study provides new insights into shared molecular mechanisms between MI and OA.


Subject(s)
Biomarkers , Gene Expression Profiling , Gene Regulatory Networks , Myocardial Infarction , Osteoarthritis , Protein Interaction Maps , Systems Biology , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Humans , Databases, Genetic , Transcriptome , Chondrocytes/metabolism , Chondrocytes/immunology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Computational Biology/methods
2.
Cell Signal ; 122: 111330, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094673

ABSTRACT

The WNT5B ligand regulates the non-canonical wingless-related integration site (WNT)-planar cell polarity (PCP) pathway. However, the detailed mechanism underlying the activity of WNT5B in the WNT-PCP pathway in non-small cell lung cancer (NSCLC) is unclear. In this study, we assessed the clinicopathological significance of WNT5B expression in NSCLC specimens. WNT5B-overexpression and -knockdown NSCLC cell lines were generated in vivo and in vitro, respectively. WNT5B overexpression in NSCLC specimens correlates with advanced tumor node metastasis (TNM) stage, lymph node metastasis, and poor prognosis in patients with NSCLC. Additionally, WNT5B promotes the malignant phenotype of NSCLC cells in vivo and in vitro. Interactions were identified among WNT5B, frizzled3 (FZD3), and disheveled3 (DVL3) in NSCLC cells, leading to the activation of WNT-PCP signaling. The FZD3 receptor initiates DVL3 recruitment to the membrane for phosphorylation in a WNT5B ligand-dependent manner and activates c-Jun N-terminal kinase (JNK) signaling via the small GTPase RAC1. Furthermore, the deletion of the DEP domain of DVL3 abrogated these effects. Overall, we demonstrated a novel signal transduction pathway in which WNT5B recruits DVL3 to the membrane via its DEP domain through interaction with FZD3 to promote RAC1-PCP-JNK signaling, providing a potential target for clinical intervention in NSCLC treatment.

3.
Nurse Educ ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38981035

ABSTRACT

BACKGROUND: The performance of GPT-4 in nursing examinations within the Chinese context has not yet been thoroughly evaluated. OBJECTIVE: To assess the performance of GPT-4 on multiple-choice and open-ended questions derived from nursing examinations in the Chinese context. METHODS: The data sets of the Chinese National Nursing Licensure Examination spanning 2021 to 2023 were used to evaluate the accuracy of GPT-4 in multiple-choice questions. The performance of GPT-4 on open-ended questions was examined using 18 case-based questions. RESULTS: For multiple-choice questions, GPT-4 achieved an accuracy of 71.0% (511/720). For open-ended questions, the responses were evaluated for cosine similarity, logical consistency, and information quality, all of which were found to be at a moderate level. CONCLUSION: GPT-4 performed well at addressing queries on basic knowledge. However, it has notable limitations in answering open-ended questions. Nursing educators should weigh the benefits and challenges of GPT-4 for integration into nursing education.

4.
Learn Health Syst ; 8(3): e10417, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036530

ABSTRACT

Introduction: The rapid development of artificial intelligence (AI) in healthcare has exposed the unmet need for growing a multidisciplinary workforce that can collaborate effectively in the learning health systems. Maximizing the synergy among multiple teams is critical for Collaborative AI in Healthcare. Methods: We have developed a series of data, tools, and educational resources for cultivating the next generation of multidisciplinary workforce for Collaborative AI in Healthcare. We built bulk-natural language processing pipelines to extract structured information from clinical notes and stored them in common data models. We developed multimodal AI/machine learning (ML) tools and tutorials to enrich the toolbox of the multidisciplinary workforce to analyze multimodal healthcare data. We have created a fertile ground to cross-pollinate clinicians and AI scientists and train the next generation of AI health workforce to collaborate effectively. Results: Our work has democratized access to unstructured health information, AI/ML tools and resources for healthcare, and collaborative education resources. From 2017 to 2022, this has enabled studies in multiple clinical specialties resulting in 68 peer-reviewed publications. In 2022, our cross-discipline efforts converged and institutionalized into the Center for Collaborative AI in Healthcare. Conclusions: Our Collaborative AI in Healthcare initiatives has created valuable educational and practical resources. They have enabled more clinicians, scientists, and hospital administrators to successfully apply AI methods in their daily research and practice, develop closer collaborations, and advanced the institution-level learning health system.

5.
Res Sq ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39011102

ABSTRACT

Most datasets suffer from partial or complete missing values, which has downstream limitations on the available models on which to test the data and on any statistical inferences that can be made from the data. Several imputation techniques have been designed to replace missing data with stand in values. The various approaches have implications for calculating clinical scores, model building and model testing. The work showcased here offers a novel means for categorical imputation based on item response theory (IRT) and compares it against several methodologies currently used in the machine learning field including k-nearest neighbors (kNN), multiple imputed chained equations (MICE) and Amazon Web Services (AWS) deep learning method, Datawig. Analyses comparing these techniques were performed on three different datasets that represented ordinal, nominal and binary categories. The data were modified so that they also varied on both the proportion of data missing and the systematization of the missing data. Two different assessments of performance were conducted: accuracy in reproducing the missing values, and predictive performance using the imputed data. Results demonstrated that the new method, Item Response Theory for Categorical Imputation (IRTCI), fared quite well compared to currently used methods, outperforming several of them in many conditions. Given the theoretical basis for the new approach, and the unique generation of probabilistic terms for determining category belonging for missing cells, IRTCI offers a viable alternative to current approaches.

6.
Prenat Diagn ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030774

ABSTRACT

OBJECTIVE: This study aimed to evaluate the yield and applicability of expanded carrier screening and propose carrier rate screening thresholds suitable for the Chinese population by comparing the current screening panel with the American College of Medical Genetics and Genomics recommended panel of 113 genes. METHODS: Using targeted next-generation sequencing, a customized panel with 334 genes was performed on 2168 individuals without clinical phenotypes for expanded carrier screening purpose. Variant interpretation followed the American College of Medical Genetics and Genomics guidelines. Carrier rates were calculated for each identified variant and each gene. At-risk couple rates were also assessed. The yield of expanded carrier screening was evaluated through calculating cumulative carrier rate. RESULTS: Overall, 65.87% of the individuals were found to be carriers of at least 1 disease causing variants. The overall at-risk couple rate was 11.76%, of which the GJB2:c.109G > A related at-risk couple rate was 5.78%. The cumulative carrier rate of 334-panel was 65.53%. When screened genes with gene carrier rate ≥1/1000, the expanded carrier screening can cover over 90% of the cumulative carrier rate and at-risk couples. A total of 86 genes overlapped with American College of Medical Genetics and Genomics Tier-3 genes and were attributed to the cumulative carrier rate of 47.33%. CONCLUSION: Expanded carrier screening using the 334-gene panel showed high screening efficiency. A threshold of gene carrier rate ≥1/1000 is recommended for selecting carrier screening genes in the Chinese Han population. This study highlights the importance of customizing screening panels based on the ACMG Tier-3 genes in conjunction with population-specific carrier frequencies to improve the accuracy and effectiveness of expanded carrier screening.

7.
Commun Biol ; 7(1): 784, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951577

ABSTRACT

Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.


Subject(s)
Click Chemistry , Mice, Inbred C57BL , Rickettsia , Animals , Rickettsia/genetics , Rickettsia/physiology , Mice , Click Chemistry/methods , Stomach/microbiology , Disease Models, Animal , Spotted Fever Group Rickettsiosis/microbiology , Female , Rickettsia Infections/microbiology , Azides/chemistry
8.
Biomicrofluidics ; 18(3): 034107, 2024 May.
Article in English | MEDLINE | ID: mdl-38947280

ABSTRACT

Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.

9.
J Med Internet Res ; 26: e58013, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008845

ABSTRACT

BACKGROUND: Nonadherence to medication among patients with cardiovascular diseases undermines the desired therapeutic outcomes. eHealth interventions emerge as promising strategies to effectively tackle this issue. OBJECTIVE: The aim of this study was to conduct a network meta-analysis (NMA) to compare and rank the efficacy of various eHealth interventions in improving medication adherence among patients with cardiovascular diseases (CVDs). METHODS: A systematic search strategy was conducted in PubMed, Embase, Web of Science, Cochrane, China National Knowledge Infrastructure Library (CNKI), China Science and Technology Journal Database (Weipu), and WanFang databases to search for randomized controlled trials (RCTs) published from their inception on January 15, 2024. We carried out a frequentist NMA to compare the efficacy of various eHealth interventions. The quality of the literature was assessed using the risk of bias tool from the Cochrane Handbook (version 2.0), and extracted data were analyzed using Stata16.0 (StataCorp LLC) and RevMan5.4 software (Cochrane Collaboration). The certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. RESULTS: A total of 21 RCTs involving 3904 patients were enrolled. The NMA revealed that combined interventions (standardized mean difference [SMD] 0.89, 95% CI 0.22-1.57), telephone support (SMD 0.68, 95% CI 0.02-1.33), telemonitoring interventions (SMD 0.70, 95% CI 0.02-1.39), and mobile phone app interventions (SMD 0.65, 95% CI 0.01-1.30) were statistically superior to usual care. However, SMS compared to usual care showed no statistical difference. Notably, the combined intervention, with a surface under the cumulative ranking curve of 79.3%, appeared to be the most effective option for patients with CVDs. Regarding systolic blood pressure and diastolic blood pressure outcomes, the combined intervention also had the highest probability of being the best intervention. CONCLUSIONS: The research indicates that the combined intervention (SMS text messaging and telephone support) has the greatest likelihood of being the most effective eHealth intervention to improve medication adherence in patients with CVDs, followed by telemonitoring, telephone support, and app interventions. The results of these network meta-analyses can provide crucial evidence-based support for health care providers to enhance patients' medication adherence. Given the differences in the design and implementation of eHealth interventions, further large-scale, well-designed multicenter trials are needed. TRIAL REGISTRATION: INPLASY 2023120063; https://inplasy.com/inplasy-2023-12-0063/.


Subject(s)
Cardiovascular Diseases , Medication Adherence , Telemedicine , Humans , Cardiovascular Diseases/drug therapy , Medication Adherence/statistics & numerical data , Randomized Controlled Trials as Topic
10.
Cell Commun Signal ; 22(1): 383, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075489

ABSTRACT

BACKGROUND: Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury. METHODS: We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression. RESULTS: The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones. CONCLUSION: These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.


Subject(s)
Brain Injuries , Phosphoglycerate Kinase , Animals , Phosphoglycerate Kinase/metabolism , Phosphoglycerate Kinase/genetics , Mice , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries/pathology , Male , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/metabolism , Hypoxia/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Mice, Inbred C57BL , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism
11.
Waste Manag ; 187: 225-234, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067199

ABSTRACT

The municipal solid waste (MSW) management is significantly contributing to global greenhouse gas (GHG) emissions. Analyzing the emission pattern of GHGs from MSW is essential for formulating appropriate carbon mitigation policies. Based on IPCC Models, GHG emissions from MSW were calculated in Chinese provinces from 2004 to 2021 by landfilling and incineration operations, separately. Landfilling and incineration generated approximately 1271 MtCO2-eq and 198 MtCO2-eq from 2004 to 2021, respectively. GHG emissions from landfilling increased from 2004 to 2020 and declined in 2021, while GHG emissions from incineration demonstrated an increasing trend with three distinct growth stages. A panel regression model was then employed to identify the key factors influencing GHG emissions. GDP and population are positively related to GHG emissions from landfills, while PCCE is negatively related to GHG emissions from landfills. GDP and PCCE have a positive impact on GHG emissions from incineration, while population showed no significant impact. Multi-expression programming was used to develop an explicit model, forecasting GHG emissions from MSW by 2030. From 2022 to 2024, GHG emissions from landfills will quickly decrease, while GHG emissions from incineration will rapidly increase. Subsequently, the GHG emission rate of incineration will slow down, and GHGs from landfilling will slowly decrease due to no MSW for landfill disposal. The methods and results provide insightful information for policy-makers and waste management sector.

12.
Article in English | MEDLINE | ID: mdl-39069827

ABSTRACT

The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on Slc25a1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of Slc25a1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for four weeks, while Nile tilapia received intraperitoneal injections of dsRNA to knockdown slc25a1b for seven days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Notably, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride accumulation by deacetylating Cpt1a. Additionally, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of non-histone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.

13.
Int J Med Sci ; 21(9): 1738-1755, 2024.
Article in English | MEDLINE | ID: mdl-39006851

ABSTRACT

Background and Objectives: Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder often exacerbated by stress, influencing the brain-gut axis (BGA). BGA dysregulation, disrupted intestinal barrier function, altered visceral sensitivity and immune imbalance defects underlying IBS pathogenesis have been emphasized in recent investigations. Phosphoproteomics reveals unique phosphorylation details resulting from environmental stress. Here, we employ phosphoproteomics to explore the molecular mechanisms underlying IBS-like symptoms, mainly focusing on the role of ZO-1 and IL-1RAP phosphorylation. Materials and Methods: Morris water maze (MWM) was used to evaluate memory function for single prolonged stress (SPS). To assess visceral hypersensitivity of IBS-like symptoms, use the Abdominal withdrawal reflex (AWR). Colonic bead expulsion and defecation were used to determine fecal characteristics of the IBS-like symptoms. Then, we applied a phosphoproteomic approach to BGA research to discover the molecular mechanisms underlying the process of visceral hypersensitivity in IBS-like mice following SPS. ZO-1, p-S179-ZO1, IL-1RAP, p-S566-IL-1RAP and GFAP levels in BGA were measured by western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay to validate phosphorylation quantification. Fluorescein isothiocyanate-dextran 4000 and electron-microscopy were performed to observe the structure and function of the intestinal epithelial barrier. Results: The SPS group showed changes in learning and memory ability. SPS exposure affects visceral hypersensitivity, increased fecal water content, and significant diarrheal symptoms. Phosphoproteomic analysis displayed that p-S179-ZO1 and p-S566-IL-1RAP were significantly differentially expressed following SPS. In addition, p-S179-ZO1 was reduced in mice's DRG, colon, small intestine, spinal and hippocampus and intestinal epithelial permeability was increased. GFAP, IL-1ß and p-S566-IL-1RAP were also increased at the same levels in the BGA. And IL-1ß showed no significant difference was observed in serum. Our findings reveal substantial alterations in ZO-1 and IL-1RAP phosphorylation, correlating with increased epithelial permeability and immune imbalance. Conclusions: Overall, decreased p-S179-ZO1 and increased p-S566-IL-1RAP on the BGA result in changes to tight junction structure, compromising the structure and function of the intestinal epithelial barrier and exacerbating immune imbalance in IBS-like stressed mice.


Subject(s)
Brain-Gut Axis , Interleukin-1 Receptor Accessory Protein , Irritable Bowel Syndrome , Zonula Occludens-1 Protein , Animals , Humans , Male , Mice , Disease Models, Animal , Interleukin-1 Receptor Accessory Protein/metabolism , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/pathology , Mice, Inbred C57BL , Phosphorylation , Stress, Psychological/metabolism , Stress, Psychological/immunology , Zonula Occludens-1 Protein/metabolism
14.
Immun Ageing ; 21(1): 38, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877498

ABSTRACT

Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.

15.
Opt Express ; 32(9): 15460-15471, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859195

ABSTRACT

In this paper, we firstly propose a method to measure the topological charges (TCs) of a circular Bessel Gaussian beam with multiple vortex singularities (CBGBMVS) by utilizing cross phase. Based on theory and experiment, the cross phase is utilized to realize the TCs measurement of the CBGBMVS in free space with different situations, such as different singularity number, TCs and singularity location. Especially, the TCs measurement method is also investigated and verified in atmosphere turbulence. Our work provides an effective and convenient way to realize the TCs measurement of multiple singularities embedded in abruptly autofocusing host beams which has plenty of potential application in optical communication.

16.
J Med Virol ; 96(6): e29711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847304

ABSTRACT

The emerging evidence of human infections with emerging viruses suggests their potential public health importance. A novel taxon of viruses named Statoviruses (for stool-associated Tombus-like viruses) was recently identified in the gastrointestinal tracts of multiple mammals. Here we report the discovery of respiratory Statovirus-like viruses (provisionally named Restviruses) from the respiratory tracts of five patients experiencing acute respiratory disease with Human coronavirus OC43 infection through the retrospective analysis of meta-transcriptomic data. Restviruses shared 53.1%-98.8% identities of genomic sequences with each other and 39.9%-44.3% identities with Statoviruses. The phylogenetic analysis revealed that Restviruses together with a Stato-like virus from nasal-throat swabs of Vietnamese patients with acute respiratory disease, formed a well-supported clade distinct from the taxon of Statoviruses. However, the consistent genome characteristics of Restviruses and Statoviruses suggested that they might share similar evolutionary trajectories. These findings warrant further studies to elucidate the etiological and epidemiological significance of the emerging Restviruses.


Subject(s)
Genome, Viral , Phylogeny , Respiratory Tract Infections , Humans , China/epidemiology , Genome, Viral/genetics , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Male , Female , Retrospective Studies , Respiratory System/virology , Child, Preschool , Adult , Child , RNA, Viral/genetics , Middle Aged
17.
Medicine (Baltimore) ; 103(23): e38438, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847704

ABSTRACT

OBJECTIVE: To evaluate the clinical effectiveness of the Kinesio tape in the treatment of patellofemoral pain syndrome (PFPS) by meta-analysis. METHODS: Two investigators independently conducted an electronic literature search to assess the outcomes of intramuscular patches for PFPS. Electronic databases included PubMed, Embase, Web of Science, Cochrane Library, Wanfang Database, Chinese Journal Full Text Database (CNKI), and Wipo Database from November 2023. Extracted inclusion indicators included pain score VAS or NRS, knee function assessment knee pain syndrome (Kujala) score, and knee symptom score Lysholm knee score scale. Data were extracted and then meta-analyzed using Review Manager 5.3 software and Stata 17.0 software. RESULT: Fourteen studies were included, all of which were randomized controlled studies. The results showed that short-term pain relief was superior in the Kinesio tape (KT) group compared with the control group, with a statistically significant difference in the results (MD = -1.54, 95% CI [-2.32, -0.76], P = .0001); medium-term pain relief was superior in the KT group compared with the control group, with a statistically significant difference in the results (MD = -0.84, 95% CI [-1.50, -0.18], P = .01); long-term pain relief in the KT group was better than the control group, with statistically different results (MD = -0.56, 95% CI [-0.98, -0.13], P < .00001). In contrast, there was no significant difference between the KT group and the control group in the assessment of knee function (MD = -0.98, 95% CI [-4.03, 2.06], P = .03), and there was no significant difference between the KT group and the control group in the Lysholm knee score scale score of knee symptoms (MD = 4.18, 95% CI [-6.70, 15.05], P = .45). CONCLUSION: Kinesio taping can effectively relieve the pain of PFPS, but has no significant effect on the improvement of knee joint function and symptoms.


Subject(s)
Athletic Tape , Patellofemoral Pain Syndrome , Humans , Patellofemoral Pain Syndrome/therapy , Treatment Outcome , Randomized Controlled Trials as Topic , Pain Measurement
18.
Small ; : e2402041, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855994

ABSTRACT

In response to the critical challenges of interfacial impedance and volumetric changes in Li(1+x)AlxTi(2­x)(PO4)3 (LATP)-based lithium metal batteries, an elastomeric lithium-conducting interlayer fabricates from fluorinated hydrogenated nitrile butadiene rubber (F-HNBR) matrix is introduced herein. Owing to the vulcanization, vapor-phase fluorination, and plasticization processes, the lithium-conducting interlayer exhibits a high elasticity of 423%, exceptional fatigue resistance (10 000 compression cycles), superior ionic conductivity of 6.3 × 10-4 S cm-1, and favorable lithiophilicity, rendering it an ideal buffer layer. By integrating the F-HNBR interlayer, the LATP-based lithium symmetric cells demonstrate an extended cycle life of up to 1600 h at 0.1 mA cm-2 and can also endure deep charge/discharge cycles (0.5 mAh cm-2) for the same duration. Furthermore, the corresponding lithium metal full cells achieve 500 cycles at 0.5 C with 98.3% capacity retention and enable a high-mass-loading cathode of 11.1 mg cm-2 to operate at room temperature.

19.
Aging Cell ; : e14209, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825816

ABSTRACT

Perioperative neurocognitive disorder (PND) is a serious neurologic complication in aged patients and might be associated with sevoflurane exposure. However, the specific pathogenesis is still unclear. The distribution of α5-GABAAR, a γ-aminobutyric acid type A receptor (GABAAR) subtype, at extrasynaptic sites is influenced by the anchor protein radixin, whose phosphorylation is regulated via the RhoA/ROCK2 signaling pathway and plays a crucial role in cognition. However, whether sevoflurane affects the ability of radixin phosphorylation to alter extrasynaptic receptor expression is unknown. Aged mice were exposed to sevoflurane to induce cognitive impairment. Both total proteins and membrane proteins were extracted for analysis. Cognitive function was evaluated using the Morris water maze and fear conditioning test. Western blotting was used to determine the expression of ROCK2 and the phosphorylation of radixin. Furthermore, the colocalization of p-radixin and α5-GABAAR was observed. To inhibit ROCK2 activity, either an adeno-associated virus (AAV) or fasudil hydrochloride was administered. Aged mice treated with sevoflurane exhibited significant cognitive impairment accompanied by increased membrane expression of α5-GABAAR. Moreover, the colocalization of α5-GABAAR and p-radixin increased after treatment with sevoflurane, and this change was accompanied by an increase in ROCK2 expression and radixin phosphorylation. Notably, inhibiting the RhoA/ROCK2 pathway significantly decreased the distribution of extrasynaptic α5-GABAAR and improved cognitive function. Sevoflurane activates the RhoA/ROCK2 pathway and increases the phosphorylation of radixin. Excess α5-GABAAR is anchored to extrasynaptic sites and impairs cognitive ability in aged mice. Fasudil hydrochloride administration improves cognitive function.

20.
J Nutr Biochem ; 131: 109678, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38844080

ABSTRACT

The solute carrier family 25 member 1 (Slc25a1)-dependent mitochondrial citrate shuttle is responsible for exporting citrate from the mitochondria to the cytoplasm for supporting lipid biosynthesis and protein acetylation. Previous studies on Slc25a1 concentrated on pathological models. However, the importance of Slc25a1 in maintaining metabolic homeostasis under normal nutritional conditions remains poorly understood. Here, we investigated the mechanism of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis in male Nile tilapia (Oreochromis niloticus). To achieve the objective, we blocked the mitochondrial citrate shuttle by inhibiting Slc25a1 under normal nutritional conditions. Slc25a1 inhibition was established by feeding Nile tilapia with 250 mg/kg 1,2,3-benzenetricarboxylic acid hydrate for 6 weeks or intraperitoneal injecting them with dsRNA to knockdown slc25a1b for 7 days. The Nile tilapia with Slc25a1 inhibition exhibited an obesity-like phenotype accompanied by fat deposition, liver damage and hyperglycemia. Moreover, Slc25a1 inhibition decreased hepatic citrate-derived acetyl-CoA, but increased hepatic triglyceride levels. Furthermore, Slc25a1 inhibition replenished cytoplasmic acetyl-CoA through enhanced acetate pathway, which led to hepatic triglycerides accumulation. However, acetate-derived acetyl-CoA caused by hepatic Slc25a1 inhibition did not activate de novo lipogenesis, but rather modified protein acetylation. In addition, hepatic Slc25a1 inhibition enhanced fatty acids esterification through acetate-derived acetyl-CoA, which increased Lipin1 acetylation and its protein stability. Collectively, our results illustrate that inhibiting mitochondrial citrate shuttle triggers lipid anabolic remodeling and results in lipid accumulation, indicating the importance of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL