Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Mol Microbiol ; 122(2): 255-270, 2024 08.
Article in English | MEDLINE | ID: mdl-39030901

ABSTRACT

The flagellar MS-ring, uniquely constituted by FliF, is essential for flagellar biogenesis and functionality in several bacteria. The aim of this study was to dissect the role of FliF in the Gram-positive and peritrichously flagellated Bacillus cereus. We demonstrate that fliF forms an operon with the upstream gene fliE. In silico analysis of B. cereus ATCC 14579 FliF identifies functional domains and amino acid residues that are essential for protein functioning. The analysis of a ΔfliF mutant of B. cereus, constructed in this study using an in frame markerless gene replacement method, reveals that the mutant is unexpectedly able to assemble flagella, although in reduced amounts compared to the parental strain. Nevertheless, motility is completely abolished by fliF deletion. FliF deprivation causes the production of submerged biofilms and affects the ability of B. cereus to adhere to gastrointestinal mucins. We additionally show that the fliF deletion does not compromise the secretion of the three components of hemolysin BL, a toxin secreted through the flagellar type III secretion system. Overall, our findings highlight the important role of B. cereus FliF in flagella-related functions, being the protein required for complete flagellation, motility, mucin adhesion, and pellicle biofilms.


Subject(s)
Bacillus cereus , Bacterial Proteins , Biofilms , Flagella , Operon , Bacillus cereus/metabolism , Bacillus cereus/genetics , Flagella/metabolism , Flagella/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Hemolysin Proteins/metabolism , Hemolysin Proteins/genetics , Bacterial Adhesion , Gene Expression Regulation, Bacterial , Gene Deletion , Membrane Proteins
2.
Front Microbiol ; 15: 1415400, 2024.
Article in English | MEDLINE | ID: mdl-39021634

ABSTRACT

Introduction: Antibiotic resistance represents one of the most significant threats to public health in the 21st century. Polyphenols, natural molecules with antibacterial activity produced by plants, are being considered as alternative antimicrobial strategies to manage infections caused by drug-resistant bacteria. In this study, we investigated the antibacterial activity of a polyphenol mixture extracted from citrus fruits, against both antibiotic-susceptible and resistant strains of Staphylococcus aureus and Staphylococcus epidermidis. Methods: Broth microdilution and time-kill curve experiments were used to test the extract anti-staphylococcal activity. Cytotoxicity was assessed by the hemolysis assay. The interaction between the mixture and antibiotics was investigated by the checkerboard assay. The effect of B alone and in combination with oxacillin on the membrane potential was investigated by the 3,3'-dipropylthiadicarbocyanine iodide assay. The ability of the extract to induce the development of resistance was verified by propagating S. aureus for 10 transfers in the presence of sub-inhibitory concentrations. Results: The citrus extract was found to be active against all Staphylococcus strains at remarkably low concentrations (0.0031 and 0.0063%), displaying rapid bactericidal effects without being toxic on erythrocytes. In particular, B was found to rapidly cause membrane depolarization. When combined with methicillin, meropenem, and oxacillin, the mixture displayed synergistic activity exclusively against methicillin-resistant strains. We additionally show that the sequential exposure of S. aureus to sub-inhibitory concentrations did not induce the development of resistance against the extract. Discussion: Overall, these findings support the potential use of the citrus extract as promising option to manage staphylococcal infections and suggest that it may counteract the mechanism behind methicillin-resistance.

3.
Diagn Microbiol Infect Dis ; 109(3): 116307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733753

ABSTRACT

The nocardiae are a complex group of bacteria belonging to the aerobic saprophytes actinomycetes. Although nocardiosis typically occurs in immunocompromised patients, infection may occasionally develop in immunocompetent patients as well. Here we describe a rare case of primary cutaneous nocardiosis due to Nocardia vinacea in an immunocompetent 79-year-old patient. Since cutaneous nocardiosis presents variably and mimics other cutaneous infections, acid-fast and Gram stainings on clinical samples are significant to obtain a rapid and presumptive diagnosis.


Subject(s)
Nocardia Infections , Nocardia , Skin Diseases, Bacterial , Humans , Nocardia Infections/diagnosis , Nocardia Infections/microbiology , Nocardia Infections/drug therapy , Nocardia/isolation & purification , Nocardia/genetics , Nocardia/classification , Aged , Skin Diseases, Bacterial/microbiology , Skin Diseases, Bacterial/diagnosis , Skin Diseases, Bacterial/drug therapy , Male , Anti-Bacterial Agents/therapeutic use , Skin/microbiology , Skin/pathology , Immunocompetence
4.
Antibiotics (Basel) ; 13(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38666994

ABSTRACT

Biofilms are surface-associated microbial communities embedded in a matrix that is almost impenetrable to antibiotics, thus constituting a critical health threat. Biofilm formation on the cornea or ocular devices can lead to serious and difficult-to-treat infections. Nowadays, natural molecules with antimicrobial activity and liposome-based delivery systems are proposed as anti-biofilm candidates. In this study, the anti-biofilm activity of a formulation containing citrus polyphenols encapsulated in liposomes was evaluated against Staphylococcus aureus and Staphylococcus epidermidis, the most common agents in ocular infections. The formulation activity against planktonic staphylococci was tested by broth microdilution and sub-inhibitory concentrations were used to evaluate the effect on biofilm formation using the crystal violet (CV) assay. The eradicating effect of the preparation on mature biofilms was investigated by the CV assay, plate count, and confocal laser scanning microscopy. The product was bactericidal against staphylococci at a dilution of 1:2 or 1:4 and able to reduce biofilm formation even if diluted at 1:64. The formulation also had the ability to reduce the biomass of mature biofilms without affecting the number of cells, suggesting activity on the extracellular matrix. Overall, our results support the application of the used liposome-encapsulated polyphenols as an anti-biofilm strategy to counter biofilm-associated ocular infections.

5.
BMC Microbiol ; 24(1): 111, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570761

ABSTRACT

BACKGROUND: Aspergillus species cause a variety of serious clinical conditions with increasing trend in antifungal resistance. The present study aimed at evaluating hospital epidemiology and antifungal susceptibility of all isolates recorded in our clinical database since its implementation. METHODS: Data on date of isolation, biological samples, patients' age and sex, clinical settings, and antifungal susceptibility tests for all Aspergillus spp. isolated from 2015 to 2022 were extracted from the clinical database. Score test for trend of odds, non-parametric Mann Kendall trend test and logistic regression analysis were used to analyze prevalence, incidence, and seasonality of Aspergillus spp. isolates. RESULTS: A total of 1126 Aspergillus spp. isolates were evaluated. A. fumigatus was the most prevalent (44.1%) followed by A. niger (22.3%), A. flavus (17.7%) and A. terreus (10.6%). A. niger prevalence increased over time in intensive care units (p-trend = 0.0051). Overall, 16 (1.5%) were not susceptible to one azole compound, and 108 (10.9%) to amphotericin B, with A. niger showing the highest percentage (21.9%). The risk of detecting A. fumigatus was higher in June, (OR = 2.14, 95% CI [1.16; 3.98] p = 0.016) and reduced during September (OR = 0.48, 95% CI [0.27; 0.87] p = 0.015) and October as compared to January (OR = 0.39, 95% CI [0.21; 0.70] p = 0.002. A. niger showed a reduced risk of isolation from all clinical samples in the month of June as compared to January (OR = 0.34, 95% CI [0.14; 0.79] p = 0.012). Seasonal trend for A. flavus showed a higher risk of detection in September (OR = 2.7, 95% CI [1.18; 6.18] p = 0.019), October (OR = 2.32, 95% CI [1.01; 5.35] p = 0.048) and November (OR = 2.42, 95% CI [1.01; 5.79] p = 0.047) as compared to January. CONCLUSIONS: This is the first study to analyze, at once, data regarding prevalence, time trends, seasonality, species distribution and antifungal susceptibility profiles of all Aspergillus spp. isolates over a 8-year period in a tertiary care center. Surprisingly no increase in azole resistance was observed over time.


Subject(s)
Antifungal Agents , Aspergillosis , Humans , Antifungal Agents/pharmacology , Tertiary Care Centers , Aspergillosis/epidemiology , Aspergillosis/microbiology , Microbial Sensitivity Tests , Aspergillus , Azoles , Drug Resistance, Fungal
6.
J Fungi (Basel) ; 9(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38132789

ABSTRACT

Antimicrobial resistance is a matter of rising concern, especially in fungal diseases. Multiple reports all over the world are highlighting a worrisome increase in azole- and echinocandin-resistance among fungal pathogens, especially in Candida species, as reported in the recently published fungal pathogens priority list made by WHO. Despite continuous efforts and advances in infection control, development of new antifungal molecules, and research on molecular mechanisms of antifungal resistance made by the scientific community, trends in invasive fungal diseases and associated antifungal resistance are on the rise, hindering therapeutic options and clinical cures. In this context, in vitro susceptibility testing aimed at evaluating minimum inhibitory concentrations, is still a milestone in the management of fungal diseases. However, such testing is not the only type at a microbiologist's disposal. There are other adjunctive in vitro tests aimed at evaluating fungicidal activity of antifungal molecules and also exploring tolerance to antifungals. This plethora of in vitro tests are still left behind and performed only for research purposes, but their role in the context of invasive fungal diseases associated with antifungal resistance might add resourceful information to the clinical management of patients. The aim of this review was therefore to revise and explore all other in vitro tests that could be potentially implemented in current clinical practice in resistant and difficult-to-treat cases.

7.
J Fungi (Basel) ; 9(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37888268

ABSTRACT

Candidemia is the fourth most common healthcare-related bloodstream infection. In recent years, incidence rates of Candida parapsilosis have been on the rise, with differences in prevalence and antifungal susceptibility between countries. The aim of the present study was to evaluate temporal changes in prevalence and antifungal susceptibility of C. parapsilosis among other species causing candidemia. All candidemia episodes from January 2015 to August 2022 were evaluated in order to depict time trends in prevalence of C. parapsilosis sensu stricto among all Candida species recovered from blood cultures as well as fluconazole- and voriconazole-non-susceptibility rates. Secondary analyses evaluated time trends in prevalence and antifungal non-susceptibility according to clinical settings. The overall prevalence of C. parapsilosis was observed to increase compared to the prevalence of other Candida species over time (p-trend = 0.0124). From 2019, the number of C. parapsilosis sensu stricto isolates surpassed C. albicans, without an increase in incidence rates. Overall rates of fluconazole- and voriconazole-non-susceptible C. parapsilosis sensu stricto were both 3/44 (6.8%) in 2015 and were 32/51 (62.7%) and 27/51 (52.9%), respectively, in 2022 (85% cross-non-susceptibility). The risk of detecting fluconazole- or voriconazole-non-susceptibility was found to be higher in C. parapsilosis compared to other Candida species (odds ratio (OR) = 1.60, 95% CI [1.170, 2.188], p-value < 0.0001 and OR = 12.867, 95% CI [6.934, 23.878], p-value < 0.0001, respectively). This is the first study to report C. parapsilosis sensu stricto as the most prevalent among Candida spp. isolated from blood cultures, with worrisome fluconazole- and voriconazole-non-susceptibility rates, unparalleled among European and North American geographical regions.

8.
J Fungi (Basel) ; 9(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37623569

ABSTRACT

Fungal diseases cause millions of deaths per year worldwide. Antifungal resistance has become a matter of great concern in public health. In recent years rates of non-albicans species have risen dramatically. Candida parapsilosis is now reported to be the second most frequent species causing candidemia in several countries in Europe, Latin America, South Africa and Asia. Rates of acquired azole resistance are reaching a worrisome threshold from multiple reports as in vitro susceptibility testing is now starting also to explore tolerance and heteroresistance to antifungal compounds. With this review, the authors seek to evaluate known antifungal resistance mechanisms and their worldwide distribution in Candida species infections with a specific focus on C. parapsilosis.

10.
Front Microbiol ; 14: 1127321, 2023.
Article in English | MEDLINE | ID: mdl-37234535

ABSTRACT

Introduction: Probiotics are living microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Adequate number of living microbes, the presence of specific microorganisms, and their survival in the gastrointestinal (GI) environment are important to achieve desired health benefits of probiotic products. In this in vitro study, 21 leading probiotic formulations commercialized worldwide were evaluated for their microbial content and survivability in simulated GI conditions. Methods: Plate-count method was used to determine the amount of living microbes contained in the products. Culture-dependent Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry and culture-independent metagenomic analysis through 16S and 18S rDNA sequencing were applied in combination for species identification. To estimate the potential survivability of the microorganisms contained in the products in the harsh GI environment, an in vitro model composed of different simulated gastric and intestinal fluids was adopted. Results: The majority of the tested probiotic products were concordant with the labels in terms of number of viable microbes and contained probiotic species. However, one product included fewer viable microbes than those displayed on the label, one product contained two species that were not declared, and another product lacked one of the labeled probiotic strains. Survivability in simulated acidic and alkaline GI fluids was highly variable depending on the composition of the products. The microorganisms contained in four products survived in both acidic and alkaline environments. For one of these products, microorganisms also appeared to grow in the alkaline environment. Conclusion: This in vitro study demonstrates that most globally commercialized probiotic products are consistent with the claims described on their labels with respect to the number and species of the contained microbes. Evaluated probiotics generally performed well in survivability tests, although viability of microbes in simulated gastric and intestinal environments showed large variability. Although the results obtained in this study indicate a good quality of the tested formulations, it is important to stress that stringent quality controls of probiotic products should always be performed to provide optimal health benefits for the host.

11.
mBio ; 14(2): e0010723, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36856418

ABSTRACT

Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.


Subject(s)
Candidiasis, Vulvovaginal , Female , Humans , Candidiasis, Vulvovaginal/microbiology , Candida/genetics , Multilocus Sequence Typing , Quality of Life , Candida albicans , Antifungal Agents/pharmacology , Phenotype , Cell Communication
12.
Microbiol Spectr ; 11(1): e0276722, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36537823

ABSTRACT

A synergistic effect of non-bactericidal concentrations of the human lactoferrin (hLF)-derived peptide hLF1-11 and rifampicin against multidrug-resistant KPC (Klebsiella pneumoniae carbapenemase)-producing K. pneumoniae has been previously shown. The present study focuses on the mechanism(s) underlying this synergistic effect. The contribution of hLF1-11 and rifampicin to the synergistic effect was evaluated by killing assays with KPC K. pneumoniae cells incubated with hLF1-11 and, after washing, with rifampicin, or vice versa. Cell membrane permeability and polarization upon exposure to hLF1-11 and/or rifampicin were evaluated by ethidium bromide (EtBr) and DiBAC4(3) (bis-1,3-dibutylbarbituric acid trimethine oxonol) permeability, respectively. The effect of carbonyl cyanide m-chlorophenyl hydrazone (CCCP), an uncoupler of oxidative phosphorylation, was also evaluated. KPC K. pneumoniae cells were effectively killed after prior exposure to rifampicin for 30 to 60 min followed by treatment with hLF1-11, while no antibacterial activity was observed when cells were incubated with hLF1-11 first and then with rifampicin. EtBr accumulation increased upon exposure to hLF1-11 or the combination of hLF1-11 and rifampicin, but not upon exposure to rifampicin alone. Moreover, hLF1-11 induced a dose-dependent membrane depolarization. As expected, the antibacterial activity of hLF1-11 alone or combined with rifampicin was significantly reduced in the presence of CCCP. Furthermore, hLF1-11 and rifampicin were synergistic also against a colistin-resistant NDM (New Delhi metallo-ß-lactamase)-producing K. pneumoniae strain. The results suggest that rifampicin was accumulated by KPC cells during the 30-to-60-min incubation and that the addition of hLF1-11 sensitized bacterial cells to rifampicin by inducing a transient loss of membrane potential and increased cell membrane permeability, thus facilitating the entrance and retention of rifampicin into the cytoplasm. IMPORTANCE The present study describes a synergistic effect between rifampicin, an impermeable hydrophobic antibiotic with an intracellular target, and an hLF1-11, an antimicrobial peptide derived from human lactoferrin, against multidrug-resistant Klebsiella pneumoniae. Carbapenem-resistant K. pneumoniae has recently caused an outbreak in Tuscany, Italy, thus pressing the need for the development of new treatment options. The mechanisms underlying such a synergistic effect have been studied. The results suggest that the synergistic effect was due to the transient loss of membrane potential induced by hLF1-11 and the subsequent increase in cell membrane permeability which allowed rifampicin to enter the bacterial cell. Therefore, it is likely that a sub-inhibitory concentration of hLF1-11 can efficiently permeabilize K. pneumoniae cells to rifampicin, allowing the antibiotic to reach its intracellular target. These results encourage further exploration of possible applications of this synergistic combination in the treatment of K. pneumoniae infections.


Subject(s)
Klebsiella Infections , Rifampin , Humans , Rifampin/pharmacology , Klebsiella pneumoniae , Lactoferrin/pharmacology , Lactoferrin/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/metabolism , Bacterial Proteins/metabolism , Colistin/pharmacology , Microbial Sensitivity Tests
13.
Sci Rep ; 12(1): 21640, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36517529

ABSTRACT

Although probiotics are often indiscriminately prescribed, they are not equal and their effects on the host may profoundly differ. In vitro determination of the attributes of probiotics should be a primary concern and be performed even before clinical studies are designed. In fact, knowledge on the biological properties a microbe possesses is crucial for selecting the most suitable bacteriotherapy for each individual. Herein, nine strains (Bacillus clausii NR, OC, SIN, T, Bacillus coagulans ATCC 7050, Bifidobacterium breve DSM 16604, Limosilactobacillus reuteri DSM 17938, Lacticaseibacillus rhamnosus ATCC 53103, and Saccharomyces boulardii CNCM I-745) declared to be contained in six commercial formulations were tested for their ability to tolerate simulated intestinal conditions, adhere to mucins, and produce ß-galactosidase, antioxidant enzymes, riboflavin, and D-lactate. With the exception of B. breve, all microbes survived in simulated intestinal fluid. L. rhamnosus was unable to adhere to mucins and differences in mucin adhesion were evidenced for L. reuteri and S. boulardii depending on oxygen levels. All microorganisms produced antioxidant enzymes, but only B. clausii, B. coagulans, B. breve, and L. reuteri synthesize ß-galactosidase. Riboflavin secretion was observed for Bacillus species and L. rhamnosus, while D-lactate production was restricted to L. reuteri and L. rhamnosus. Our findings indicate that the analyzed strains possess different in vitro biological properties, thus highlighting the usefulness of in vitro tests as prelude for clinical research.


Subject(s)
Limosilactobacillus reuteri , Probiotics , Antioxidants , beta-Galactosidase , Mucins , Lactates , Riboflavin
14.
Microorganisms ; 10(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35889166

ABSTRACT

Over the last years, nontuberculous mycobacteria (NTM) have emerged as important human pathogens. Accurate and rapid mycobacterial species identification is needed to successfully diagnose, treat, and manage infections caused by NTM. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS, was demonstrated to effectively identify mycobacteria isolates subcultured from solid or liquid media rather than new positive cultures. The present study aims to develop a new extraction protocol to yield rapid and accurate identification of NTM from primary MGIT cultures by MALDI-TOF MS. A total of 60 positive MGIT broths were examined by the Bruker Biotyper system with Mycobacteria Library v. 2.0 (Bruker Daltonics GmbH & Co. KG., Bremen, Germany). The results were compared with those obtained by the molecular method, line probe assay GenoType Mycobacterium CM/AS/NTM-DR. All samples were concordantly identified by MALDI-TOF MS and the molecular test for all the tested mycobacteria. Fifty-seven (95%) MGIT positive cultures for NTM from clinical samples had a MALDI-TOF MS analysis score S ≥ 1.8. Although a small number of strains and a limited diversity of mycobacterial species were analysed, our results suggest that MALDI-TOF MS could represent a promising routine diagnostic tool for identifying mycobacterial species directly from primary liquid culture.

15.
Microbiol Spectr ; 10(4): e0124022, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35876581

ABSTRACT

Candida species are the main fungal opportunistic pathogens causing systemic infections that are often associated with drug resistance and biofilm production on medical devices. The pressing need for new antifungal agents led to an increased interest in the use of combination therapies. The present study was aimed at investigating potential synergistic activity of the human lactoferrin-derived hLF1-11 peptide with caspofungin against caspofungin-resistant or -susceptible C. albicans, C. parapsilosis, and C. glabrata strains. Synergism was evaluated by the checkerboard assay, measuring cellular metabolic activity against Candida planktonic and sessile cells. A fractional inhibitory concentration (FIC) index of ≤0.5 was interpreted as synergy. Synergism was evaluated by killing assays on planktonic cells. A cell viability assay was performed with biofilm formation inhibition and preformed biofilm. Synergy for killing and viability assays was defined as a ≥2-log-CFU/mL reduction in comparison with the most active constituent. hLF1-11 and caspofungin exerted (i) synergistic effects against planktonic cells of all the tested strains, yielding drastic caspofungin MIC reduction, (ii) synergistic effects on the inhibition of biofilm formation against biofilm producer strains, yielding caspofungin BIC reduction, and (iii) synergistic effects on preformed biofilm assessed by measuring metabolic activity (FIC range, 0.28 to 0.37) against biofilm-producing strains and by cell viability assay in C. albicans SC5314. The synergistic effect observed between caspofungin and hLF1-11 against Candida spp. is of potential clinical relevance, representing a promising novel approach to target caspofungin-resistant Candida species infections. Further studies elucidating the mechanisms of action of such a synergistic effect are needed. IMPORTANCE The present study describes a synergistic effect between a conventional antifungal drug, caspofungin, and a synthetic peptide derived from human lactoferrin, hLF1-11, against Candida species. These yeasts are able to cause severe systemic fungal infections in immunocompromised hosts. In addition, they can form biofilms in medical implanted devices. Recently, caspofungin-resistant Candida strains have emerged, thus highlighting the need to develop different therapeutic strategies. In in vitro studies, this drug combination is able to restore sensitivity to caspofungin in caspofungin-resistant strains of Candida species, both in free-living cells and in cells organized in biofilms. This synergism could represent a promising novel approach to target infections caused by caspofungin-resistant Candida species.


Subject(s)
Candida , Lactoferrin , Antifungal Agents/pharmacology , Biofilms , Candida albicans , Caspofungin/pharmacology , Humans , Lactoferrin/pharmacology , Microbial Sensitivity Tests
16.
BMC Microbiol ; 22(1): 143, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35597925

ABSTRACT

BACKGROUND: The current diagnostic gold standard for Pneumocystis jirovecii is represented by microscopic visualization of the fungus from clinical respiratory samples, as bronchoalveolar-lavage fluid, defining "proven" P. jirovecii pneumonia, whereas qPCR allows defining "probable" diagnosis, as it is unable to discriminate infection from colonization. However, molecular methods, such as end-point PCR and qPCR, are faster, easier to perform and interpret, thus allowing the laboratory to give back the clinician useful microbiological data in a shorter time. The present study aims at comparing microscopy with molecular assays and beta-D-glucan diagnostic performance on bronchoalveolar-lavage fluids from patients with suspected Pneumocystis jirovecii pneumonia. Bronchoalveolar-lavage fluid from eighteen high-risk and four negative control subjects underwent Grocott-Gomori's methenamine silver-staining, end-point PCR, RT-PCR, and beta-D-glucan assay. RESULTS: All the microscopically positive bronchoalveolar-lavage samples (50%) also resulted positive by end-point and real time PCR and all, but two, resulted positive also by beta-D-glucan quantification. End-point PCR and RT-PCR detected 10 (55%) and 11 (61%) out of the 18 samples, respectively, thus showing an enhanced sensitivity in comparison to microscopy. All RT-PCR with a Ct < 27 were confirmed microscopically, whereas samples with a Ct ≥ 27 were not. CONCLUSIONS: Our work highlights the need of reshaping and redefining the role of molecular diagnostics in a peculiar clinical setting, like P. jirovecii infection, which is a rare but also severe and rapidly progressive clinical condition affecting immunocompromised hosts that would largely benefit from a faster diagnosis. Strictly selected patients, according to the inclusion criteria, resulting negative by molecular methods could be ruled out for P. jirovecii pneumonia.


Subject(s)
Pneumonia, Pneumocystis , Bronchoalveolar Lavage Fluid/microbiology , Glucans , Humans , Immunocompromised Host , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Pneumocystis/microbiology , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Therapeutic Irrigation
17.
Sci Rep ; 12(1): 2875, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190600

ABSTRACT

Recent studies indicate the existence of a complex microbiome in the meconium of newborns that plays a key role in regulating many host health-related conditions. However, a high variability between studies has been observed so far. In the present study, the meconium microbiome composition and the predicted microbial metabolic pathways were analysed in a consecutive cohort of 96 full-term newborns. The effect of maternal epidemiological variables on meconium diversity was analysed using regression analysis and PERMANOVA. Meconium microbiome composition mainly included Proteobacteria (30.95%), Bacteroidetes (23.17%) and Firmicutes (17.13%), while for predicted metabolic pathways, the most abundant genes belonged to the class "metabolism". We observed a significant effect of maternal Rh factor on Shannon and Inverse Simpson indexes (p = 0.045 and p = 0.049 respectively) and a significant effect of delivery mode and maternal antibiotic exposure on Jaccard and Bray-Curtis dissimilarities (p = 0.001 and 0.002 respectively), while gestational age was associated with observed richness and Shannon indexes (p = 0.018 and 0.037 respectively), and Jaccard and Bray-Curtis dissimilarities (p = 0.014 and 0.013 respectively). The association involving maternal Rh phenotype suggests a role for host genetics in shaping meconium microbiome prior to the exposition to the most well-known environmental variables, which will influence microbiome maturation in the newborn.


Subject(s)
Gastrointestinal Microbiome , Meconium/microbiology , Anti-Bacterial Agents , Bacteroidetes , Cohort Studies , Female , Firmicutes , Gastrointestinal Microbiome/physiology , Gestational Age , Humans , Infant, Newborn , Maternal Exposure , Meconium/metabolism , Pregnancy , Proteobacteria , Rh-Hr Blood-Group System
18.
Microorganisms ; 10(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35208740

ABSTRACT

Recurrent infection by Clostridioides difficile has recently been treated by fecal microbiota transplantation (FMT). As viable SARS-CoV-2 was recovered from stool of asymptomatic individuals, the FMT procedure could be a potential risk of SARS-CoV-2 transmission, thus underlying the need to reliably detect SARS-CoV-2 in stool. Here, we performed a multicentric study to explore performances of two commercially available assays for detection of SARS-CoV-2 RNA in stool of potential FMT donors. In three hospitals, 180 stool samples were spiked with serial 10-fold dilutions of a SARS-CoV-2 inactivated lysate to evaluate the Seegene Allplex™ SARS-CoV-2 (SC2) and SARS-CoV-2/FluA/FluB/RSV (SC2FABR) Assays for the detection of viral RNA in stool of FMT donors. The results revealed that both assays detected down to 2 TCID50/mL with comparable limit of detection values, SC2 showing more consistent target positivity rate than SC2FABR. Beyond high amplification efficiency, correlation between CT values and log concentrations of inactivated viral lysates showed R2 values ranging from 0.88 to 0.90 and from 0.87 to 0.91 for the SC2 and SC2FABR assay, respectively. The present results demonstrate that both methods are highly reproducible, sensitive, and accurate for SARS-CoV-2 RNA detection in stool, suggesting a potential use in FMT-donor screening.

20.
Eur J Cancer Prev ; 31(5): 401-407, 2022 09 01.
Article in English | MEDLINE | ID: mdl-34653070

ABSTRACT

BACKGROUND: Gastric cancer is worldwide the fourth more common cancer type by incidence, and the third by mortality. We analyzed three missense variants of TAS2R38 gene: rs713598 (A49P), rs1726866 (V262A), and rs10246939 (I296V). These variants and their combination in haplotypes (proline, alanine and valine/tasters or alanine, valine and isoleucine/nontasters) and diplotypes are responsible for individual differences in bitter perception. The single-nucleotide polymorphisms and the related phenotypes are known to be associated with susceptibility to Gram-negative bacterial infections, such as Helicobacter pylori , and with risk of various cancer types. An association between intermediate tasters (as defined by TAS2R38 diplotypes) and increased risk of gastric cancer was reported in a Korean population. METHODS: We analyzed 2616 individuals of Latin American origin, representing the whole spectrum of lesions from gastritis to gastric cancer. RESULTS: Comparing cancer cases vs. noncancers we observed a decrease in risk associated with heterozygous carriers of rs10246939 ( P = 0.006) and rs1726866 ( P = 0.003) when compared with homozygotes of the more common allele. Also, the analysis of diplotypes/phenotypes reflected the same association, with super-tasters showing a borderline increased risk of developing gastric cancer compared to medium-tasters [odds ratio (OR) = 1.63; 95% confidence interval (CI), 1.04-2.56; P = 0.033]. Also, nontasters showed an increased risk when compared to medium-tasters although not reaching statistical significance (OR = 1.58; 95% CI, 0.80-2.87; P = 0.203). We also tested the interactions between the TAS2R38 genotypes and H. pylori cagA status in a subset of samples and found no interaction. CONCLUSION: In conclusion, our results suggest only a modest contribution of TAS2R38 gene genetic variability in gastric cancer etiology.


Subject(s)
Helicobacter Infections , Precancerous Conditions , Receptors, G-Protein-Coupled/genetics , Stomach Neoplasms , Genotype , Helicobacter Infections/complications , Helicobacter Infections/genetics , Helicobacter pylori/physiology , Humans , Precancerous Conditions/genetics , Stomach Neoplasms/etiology , Stomach Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL