Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 200
1.
J Virol ; 98(4): e0119023, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38501840

Topically applied microbicides may play a critical role in preventing sexual transmission of human immunodeficiency virus type 1 (HIV-1); however, their efficacy can be compromised by amyloid fibrils present in semen, which significantly increase HIV-1 infectivity. This phenomenon may have contributed to the failure of most microbicide candidates in clinical settings. Understanding the impact of semen on microbicide effectiveness is thus crucial. In our study, we evaluated the influence of semen on the neutralizing activity of broadly neutralizing antibodies (bNAbs), including PG16, PGT121, 10-1074, 3BNC117, and VRC01, which are potential microbicide candidates. We found that semen enhances infection of HIV-1 transmitted/founder viruses but only marginally affects the neutralizing activity of tested antibodies, suggesting their potential for microbicide application. Our findings underscore the need to consider semen-mediated enhancement when evaluating and developing microbicides and highlight the potential of incorporating HIV-1 bNAbs in formulations to enhance efficacy and mitigate HIV-1 transmission during sexual encounters.IMPORTANCEThis study examined the impact of semen on the development of microbicides, substances used to prevent the transmission of HIV-1 during sexual activity. Semen contains certain components that can render the virus more infectious, posing a challenge to microbicide effectiveness. Researchers specifically investigated the effect of semen on a group of powerful antibodies called broadly neutralizing antibodies, which can neutralize a large spectrum of different HIV-1 variants. The results revealed that semen only had a minimal effect on the antibodies' ability to neutralize the virus. This is promising because it suggests that these antibodies could still be effective in microbicides, even in the presence of semen. Understanding this interaction is crucial for developing better strategies to prevent HIV-1 transmission. By incorporating the knowledge gained from this study, scientists can now focus on creating microbicides that consider the impact of semen, bringing us closer to more effective prevention methods.


Anti-Infective Agents , HIV Infections , HIV-1 , Semen , Humans , Anti-Infective Agents/pharmacology , Antibodies, Neutralizing , Antiviral Agents/pharmacology , Broadly Neutralizing Antibodies/pharmacology , HIV Antibodies , HIV Infections/transmission , HIV-1/physiology , Semen/chemistry , Semen/virology
2.
Nat Microbiol ; 9(4): 905-921, 2024 Apr.
Article En | MEDLINE | ID: mdl-38528146

Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.


Body Fluids , Extracellular Vesicles , Viruses , Zika Virus Infection , Zika Virus , Female , Humans , Phosphatidylserines , Virus Attachment
4.
Antibodies (Basel) ; 13(1)2024 Jan 05.
Article En | MEDLINE | ID: mdl-38247569

The COVID-19 pandemic, once a global crisis, is now largely under control, a testament to the extraordinary global efforts involving vaccination and public health measures. However, the relentless evolution of SARS-CoV-2, leading to the emergence of new variants, continues to underscore the importance of remaining vigilant and adaptable. Monoclonal antibodies (mAbs) have stood out as a powerful and immediate therapeutic response to COVID-19. Despite the success of mAbs, the evolution of SARS-CoV-2 continues to pose challenges and the available antibodies are no longer effective. New variants require the ongoing development of effective antibodies. In the present study, we describe the generation and characterization of neutralizing mAbs against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein by combining plasmid DNA and recombinant protein vaccination. By integrating genetic immunization for rapid antibody production and the potent immune stimulation enabled by protein vaccination, we produced a rich pool of antibodies, each with unique binding and neutralizing specificities, tested with the ELISA, BLI and FACS assays and the pseudovirus assay, respectively. Here, we present a panel of mAbs effective against the SARS-CoV-2 variants up to Omicron BA.1 and BA.5, with the flexibility to target emerging variants. This approach ensures the preparedness principle is in place to address SARS-CoV-2 actual and future infections.

5.
Nat Immunol ; 25(2): 218-225, 2024 Feb.
Article En | MEDLINE | ID: mdl-38212464

Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used 'omic" assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4+ T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8+ T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.


COVID-19 , SARS-CoV-2 , Female , Male , Humans , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , Immunity, Humoral , Antibodies, Viral , Inflammation
6.
Adv Healthc Mater ; 13(4): e2301364, 2024 Feb.
Article En | MEDLINE | ID: mdl-37947246

Retroviral gene delivery is the key technique for in vitro and ex vivo gene therapy. However, inefficient virion-cell attachment resulting in low gene transduction efficacy remains a major challenge in clinical applications. Adjuvants for ex vivo therapy settings need to increase transduction efficiency while being easily removed or degraded post-transduction to prevent the risk of venous embolism after infusing the transduced cells back to the bloodstream of patients, yet no such peptide system have been reported thus far. In this study, peptide amphiphiles (PAs) with a hydrophobic fatty acid and a hydrophilic peptide moiety that reveal enhanced viral transduction efficiency are introduced. The PAs form ß-sheet-rich fibrils that assemble into positively charged aggregates, promoting virus adhesion to the cell membrane. The block-type amphiphilic sequence arrangement in the PAs ensures efficient cell-virus interaction and biodegradability. Good biodegradability is observed for fibrils forming small aggregates and it is shown that via molecular dynamics simulations, the fibril-fibril interactions of PAs are governed by fibril surface hydrophobicity. These findings establish PAs as additives in retroviral gene transfer, rivalling commercially available transduction enhancers in efficiency and degradability with promising translational options in clinical gene therapy applications.


Gene Transfer Techniques , Peptides , Humans , Peptides/chemistry , Genetic Therapy , Adjuvants, Immunologic
7.
Front Immunol ; 14: 1270243, 2023.
Article En | MEDLINE | ID: mdl-38022685

Chimeric antigen receptor (CAR)-T cell therapy is a groundbreaking immunotherapy for cancer. However, the intricate and costly manufacturing process remains a hurdle. Improving the transduction rate is a potential avenue to cut down costs and boost therapeutic efficiency. Peptide nanofibrils (PNFs) serve as one such class of transduction enhancers. PNFs bind to negatively charged virions, facilitating their active engagement by cellular protrusions, which enhances virion attachment to cells, leading to increased cellular entry and gene transfer rates. While first-generation PNFs had issues with aggregate formation and potential immunogenicity, our study utilized in silico screening to identify short, endogenous, and non-immunogenic peptides capable of enhancing transduction. This led to the discovery of an 8-mer peptide, RM-8, which forms PNFs that effectively boost T cell transduction rates by various retroviral vectors. A subsequent structure-activity relationship (SAR) analysis refined RM-8, resulting in the D4 derivative. D4 peptide is stable and assembles into smaller PNFs, avoiding large aggregate formation, and demonstrates superior transduction rates in primary T and NK cells. In essence, D4 PNFs present an economical and straightforward nanotechnological tool, ideal for refining ex vivo gene transfer in CAR-T cell production and potentially other advanced therapeutic applications.


Killer Cells, Natural , T-Lymphocytes , Transduction, Genetic , Peptides , Immunotherapy, Adoptive/methods
8.
J Med Chem ; 66(22): 15189-15204, 2023 11 23.
Article En | MEDLINE | ID: mdl-37940118

EPI-X4, a natural peptide CXCR4 antagonist, shows potential for treating inflammation and cancer, but its short plasma stability limits its clinical application. We aimed to improve the plasma stability of EPI-X4 analogues without compromising CXCR4 antagonism. Our findings revealed that only the peptide N-terminus is prone to degradation. Consequently, incorporating d-amino acids or acetyl groups in this region enhanced peptide stability in plasma. Notably, EPI-X4 leads 5, 27, and 28 not only retained their CXCR4 binding and antagonism but also remained stable in plasma for over 8 h. Molecular dynamic simulations showed that these modified analogues bind similarly to CXCR4 as the original peptide. To further increase their systemic half-lives, we conjugated these stabilized analogues with large polymers and albumin binders. These advances highlight the potential of the optimized EPI-X4 analogues as promising CXCR4-targeted therapeutics and set the stage for more detailed preclinical assessments.


HIV Infections , HIV-1 , Humans , HIV-1/metabolism , Peptides/chemistry , Receptors, CXCR4/metabolism , Albumins/metabolism , Signal Transduction , Amines/metabolism
9.
Int J Mol Sci ; 24(22)2023 Nov 12.
Article En | MEDLINE | ID: mdl-38003419

EPI-X4, an endogenous peptide inhibitor, has exhibited potential as a blocker of CXCR4-a G protein-coupled receptor. This unique inhibitor demonstrates the ability to impede HIV-1 infection and halt CXCR4-dependent processes such as tumor cell migration and invagination. Despite its promising effects, a comprehensive understanding of the interaction between EPI-X4 and CXCR4 under natural conditions remains elusive due to experimental limitations. To bridge this knowledge gap, a simulation approach was undertaken. Approximately 150,000 secondary structures of EPI-X4 were subjected to simulations to identify thermodynamically stable candidates. This simulation process harnessed a self-developed reactive force field operating within the ReaxFF framework. The application of the Two-Phase Thermodynamic methodology to ReaxFF facilitated the derivation of crucial thermodynamic attributes of the EPI-X4 conformers. To deepen insights, an ab initio density functional theory calculation method was employed to assess the electrostatic potentials of the most relevant (i.e., stable) EPI-X4 structures. This analytical endeavor aimed to enhance comprehension of the inhibitor's structural characteristics. As a result of these investigations, predictions were made regarding how EPI-X4 interacts with CXCR4. Two pivotal requirements emerged. Firstly, the spatial conformation of EPI-X4 must align effectively with the CXCR4 receptor protein. Secondly, the functional groups present on the surface of the inhibitor's structure must complement the corresponding features of CXCR4 to induce attraction between the two entities. These predictive outcomes were based on a meticulous analysis of the conformers, conducted in a gaseous environment. Ultimately, this rigorous exploration yielded a suitable EPI-X4 structure that fulfills the spatial and functional prerequisites for interacting with CXCR4, thus potentially shedding light on new avenues for therapeutic development.


HIV Infections , Peptides , Humans , Peptides/pharmacology , Peptides/chemistry , Receptors, CXCR4/metabolism , Molecular Conformation
10.
Bioconjug Chem ; 34(9): 1645-1652, 2023 09 20.
Article En | MEDLINE | ID: mdl-37665137

Viral infections pose a significant threat to human health, and effective antiviral strategies are urgently needed. Antiviral peptides have emerged as a promising class of therapeutic agents due to their unique properties and mechanisms of action. While effective on their own, combining antiviral peptides may allow us to enhance their potency and to prevent viral resistance. Here, we developed an orthogonal chemical strategy to prepare a heterodimeric peptide conjugate assembled on a protein-based nanoplatform. Specifically, we combined the optimized version of two peptides inhibiting HIV-1 by distinct mechanisms. Virus-inhibitory peptide (VIRIP) is a 20 amino acid fragment of α1-antitrypsin that inhibits HIV-1 by targeting the gp41 fusion peptide. Endogenous peptide inhibitor of CXCR4 (EPI-X4) is a 16-residue fragment of human serum albumin that prevents HIV-1 entry by binding to the viral CXCR4 co-receptor. Optimized forms of both peptides are assembled on supramolecular nanoplatforms through the streptavidin-biotin interaction. We show that the construct consisting of the two different peptides (SAv-VIR-102C9-EPI-X4 JM#173-C) shows increased activity against CCR5- and CXCR4-tropic HIV-1 variants. Our results are a proof of concept that peptides with different modes of action can be assembled on nanoplatforms to enhance their antiviral activity.


HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , HIV Infections/prevention & control , Peptides/pharmacology , Serum Albumin, Human , Antiviral Agents
11.
Front Immunol ; 14: 1231274, 2023.
Article En | MEDLINE | ID: mdl-37753087

A multitude of alterations in the old immune system impair its functional integrity. Closely related, older individuals show, for example, a reduced responsiveness to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. However, systematic strategies to specifically improve the efficacy of vaccines in the old are missing or limited to simple approaches like increasing the antigen concentration or injection frequencies. We here asked whether the intrinsic, trimeric structure of the SARS-CoV-2 spike (S) antigen and/or a DNA- or protein-based antigen delivery platform affects priming of functional antibody responses particularly in old mice. The used S-antigens were primarily defined by the presence/absence of the membrane-anchoring TM domain and the closely interlinked formation/non-formation of a trimeric structure of the receptor binding domain (S-RBD). Among others, we generated vectors expressing prefusion-stabilized, cell-associated (TM+) trimeric "S2-P" or secreted (TM-) monomeric "S6-PΔTM" antigens. These proteins were produced from vector-transfected HEK-293T cells under mild conditions by Strep-tag purification, revealing that cell-associated but not secreted S proteins tightly bound Hsp73 and Grp78 chaperones. We showed that both, TM-deficient S6-PΔTM and full-length S2-P antigens elicited very similar S-RBD-specific antibody titers and pseudovirus neutralization activities in young (2-3 months) mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. The trimeric S2-P antigen induced high S-RBD-specific antibody responses in old (23-24 months) mice through DNA-prime/DNA-boost vaccination. Unexpectedly, the monomeric S6-PΔTM antigen induced very low S-RBD-specific antibody titers in old mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. However, old mice efficiently elicited an S-RBD-specific antibody response after heterologous DNA-prime/protein-boost immunization with the S6-PΔTM antigen, and antibody titers even reached similar levels and neutralizing activities as in young mice and also cross-reacted with different S-variants of concern. The old immune system thus distinguished between trimeric and monomeric S protein conformations: it remained antigen responsive to the trimeric S2-P antigen, and a simple change in the vaccine delivery regimen was sufficient to unleash its reactivity to the monomeric S6-PΔTM antigen. This clearly shows that both the antigen structure and the delivery platform are crucial to efficiently prime humoral immune responses in old mice and might be relevant for designing "age-adapted" vaccine strategies.


Blood Group Antigens , COVID-19 , Vaccines, DNA , Animals , Mice , Antibodies, Neutralizing , SARS-CoV-2 , Immunization
12.
Nat Commun ; 14(1): 5121, 2023 08 23.
Article En | MEDLINE | ID: mdl-37612273

Gene therapy via retroviral vectors holds great promise for treating a variety of serious diseases. It requires the use of additives to boost infectivity. Amyloid-like peptide nanofibers (PNFs) were shown to efficiently enhance retroviral gene transfer. However, the underlying mode of action of these peptides remains largely unknown. Data-mining is an efficient method to systematically study structure-function relationship and unveil patterns in a database. This data-mining study elucidates the multi-scale structure-property-activity relationship of transduction enhancing peptides for retroviral gene transfer. In contrast to previous reports, we find that not the amyloid fibrils themselves, but rather µm-sized ß-sheet rich aggregates enhance infectivity. Specifically, microscopic aggregation of ß-sheet rich amyloid structures with a hydrophobic surface pattern and positive surface charge are identified as key material properties. We validate the reliability of the amphiphilic sequence pattern and the general applicability of the key properties by rationally creating new active sequences and identifying short amyloidal peptides from various pathogenic and functional origin. Data-mining-even for small datasets-enables the development of new efficient retroviral transduction enhancers and provides important insights into the diverse bioactivity of the functional material class of amyloids.


Amyloidogenic Proteins , Data Mining , Reproducibility of Results , Databases, Factual , Peptides , Retroviridae
13.
Life Sci Alliance ; 6(9)2023 09.
Article En | MEDLINE | ID: mdl-37402592

SARS-CoV-2 triggered the most severe pandemic of recent times. To enter into a host cell, SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2). However, subsequent studies indicated that other cell membrane receptors may act as virus-binding partners. Among these receptors, the epidermal growth factor receptor (EGFR) was hypothesized not only as a spike protein binder, but also to be activated in response to SARS-CoV-2. In our study, we aim at dissecting EGFR activation and its major downstream signaling pathway, the mitogen-activated signaling pathway (MAPK), in SARS-CoV-2 infection. Here, we demonstrate the activation of EGFR-MAPK signaling axis by the SARS-CoV-2 spike protein and we identify a yet unknown cross talk between ACE2 and EGFR that regulated ACE2 abundance and EGFR activation and subcellular localization, respectively. By inhibiting the EGFR-MAPK activation, we observe a reduced infection with either spike-pseudotyped particles or authentic SARS-CoV-2, thus indicating that EGFR serves as a cofactor and the activation of EGFR-MAPK contributes to SARS-CoV-2 infection.


COVID-19 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/metabolism , ErbB Receptors/metabolism
14.
Sci Adv ; 9(27): eadf8251, 2023 07 07.
Article En | MEDLINE | ID: mdl-37406129

Semen is an important vector for sexual HIV-1 transmission. Although CXCR4-tropic (X4) HIV-1 may be present in semen, almost exclusively CCR5-tropic (R5) HIV-1 causes systemic infection after sexual intercourse. To identify factors that may limit sexual X4-HIV-1 transmission, we generated a seminal fluid-derived compound library and screened it for antiviral agents. We identified four adjacent fractions that blocked X4-HIV-1 but not R5-HIV-1 and found that they all contained spermine and spermidine, abundant polyamines in semen. We showed that spermine, which is present in semen at concentrations up to 14 mM, binds CXCR4 and selectively inhibits cell-free and cell-associated X4-HIV-1 infection of cell lines and primary target cells at micromolar concentrations. Our findings suggest that seminal spermine restricts sexual X4-HIV-1 transmission.


HIV Infections , HIV-1 , Humans , Spermidine/pharmacology , Spermine/pharmacology , HIV Infections/drug therapy , Cell Line , Receptors, CXCR4
15.
Nat Commun ; 14(1): 4293, 2023 07 18.
Article En | MEDLINE | ID: mdl-37464004

Amyloid fibrils have emerged as innovative tools to enhance the transduction efficiency of retroviral vectors in gene therapy strategies. In this study, we used cryo-electron microscopy to analyze the structure of a biotechnologically engineered peptide fibril that enhances retroviral infectivity. Our findings show that the peptide undergoes a time-dependent morphological maturation into polymorphic amyloid fibril structures. The fibrils consist of mated cross-ß sheets that interact by the hydrophobic residues of the amphipathic fibril-forming peptide. The now available structural data help to explain the mechanism of retroviral infectivity enhancement, provide insights into the molecular plasticity of amyloid structures and illuminate the thermodynamic basis of their morphological maturation.


Amyloid beta-Peptides , Amyloid , Amyloid/chemistry , Cryoelectron Microscopy , Amyloid beta-Peptides/chemistry , Models, Molecular , Protein Conformation, beta-Strand
16.
J Med Chem ; 66(13): 8484-8497, 2023 07 13.
Article En | MEDLINE | ID: mdl-37328158

The peptide fragment of human serum albumin that was identified as an inhibitor of C-X-C motif chemokine receptor 4 (CXCR4), termed EPI-X4, was investigated as a scaffold for the development of CXCR4-targeting radio-theragnostics. Derivatives of its truncated version JM#21 (ILRWSRKLPCVS) were conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and tested in Jurkat and Ghost-CXCR4 cells. Ligand-1, -2, -5, -6, -7, -8, and -9 were selected for radiolabeling. Molecular modeling indicated that 177Lu-DOTA incorporation C-terminally did not interfere with the CXCR4 binding. Lipophilicity, in vitro plasma stability, and cellular uptake hinted 177Lu-7 as superior. In Jurkat xenografts, all radioligands showed >90% washout from the body within an hour, with the exception of 177Lu-7 and 177Lu-9. 177Lu-7 demonstrated best CXCR4-tumor targeting. Ex vivo biodistribution and single-photon emission computed tomography (SPECT)/positron emission tomography (PET)/CT imaging of 177Lu-7/68Ga-7 showed the same distribution profile for both radioligands, characterized by very low uptake in all nontargeted organs except the kidneys. The data support the feasibility of CXCR4-targeting with EPI-X4-based radioligands and designate ligand-7 as a lead candidate for further optimization.


Positron-Emission Tomography , Radioisotopes , Humans , Radioisotopes/chemistry , Tissue Distribution , Ligands , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon , Cell Line, Tumor , Receptors, CXCR4/metabolism
17.
bioRxiv ; 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37333294

Progress in understanding long COVID and developing effective therapeutics is hampered in part by the lack of suitable animal models. Here we used ACE2-transgenic mice recovered from Omicron (BA.1) infection to test for pulmonary and behavioral post-acute sequelae. Through in-depth phenotyping by CyTOF, we demonstrate that naïve mice experiencing a first Omicron infection exhibit profound immune perturbations in the lung after resolving acute infection. This is not observed if mice were first vaccinated with spike-encoding mRNA. The protective effects of vaccination against post-acute sequelae were associated with a highly polyfunctional SARS-CoV-2-specific T cell response that was recalled upon BA.1 breakthrough infection but not seen with BA.1 infection alone. Without vaccination, the chemokine receptor CXCR4 was uniquely upregulated on multiple pulmonary immune subsets in the BA.1 convalescent mice, a process previously connected to severe COVID-19. Taking advantage of recent developments in machine learning and computer vision, we demonstrate that BA.1 convalescent mice exhibited spontaneous behavioral changes, emotional alterations, and cognitive-related deficits in context habituation. Collectively, our data identify immunological and behavioral post-acute sequelae after Omicron infection and uncover a protective effect of vaccination against post-acute pulmonary immune perturbations.

18.
Biomater Sci ; 11(15): 5251-5261, 2023 Jul 25.
Article En | MEDLINE | ID: mdl-37341479

Amyloid-like nanofibers from self-assembling peptides can promote viral gene transfer for therapeutic applications. Traditionally, new sequences are discovered either from screening large libraries or by creating derivatives of known active peptides. However, the discovery of de novo peptides, which are sequence-wise not related to any known active peptides, is limited by the difficulty to rationally predict structure-activity relationships because their activities typically have multi-scale and multi-parameter dependencies. Here, we used a small library of 163 peptides as a training set to predict de novo sequences for viral infectivity enhancement using a machine learning (ML) approach based on natural language processing. Specifically, we trained an ML model using continuous vector representations of the peptides, which were previously shown to retain relevant information embedded in the sequences. We used the trained ML model to sample the sequence space of peptides with 6 amino acids to identify promising candidates. These 6-mers were then further screened for charge and aggregation propensity. The resulting 16 new 6-mers were tested and found to be active with a 25% hit rate. Strikingly, these de novo sequences are the shortest active peptides for infectivity enhancement reported so far and show no sequence relation to the training set. Moreover, by screening the sequence space, we discovered the first hydrophobic peptide fibrils with a moderately negative surface charge that can enhance infectivity. Hence, this ML strategy is a time- and cost-efficient way for expanding the sequence space of short functional self-assembling peptides exemplified for therapeutic viral gene delivery.


Nanofibers , Peptides , Amino Acid Sequence , Peptides/chemistry , Amyloid
19.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Article En | MEDLINE | ID: mdl-37198527

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


COVID-19 , Zika Virus Infection , Zika Virus , Humans , Peptides , Amyloid/chemistry , Anti-Bacterial Agents/pharmacology , Hemoglobins
20.
Front Immunol ; 14: 1170759, 2023.
Article En | MEDLINE | ID: mdl-37180152

Background: Recent data on immune evasion of new SARS-CoV-2 variants raise concerns about the efficacy of antibody-based COVID-19 therapies. Therefore, in this study the in-vitro neutralization capacity against SARS-CoV-2 variant B.1 and the Omicron subvariants BA.1, BA.2 and BA.5 of sera from convalescent individuals with and without boost by vaccination was assessed. Methods and findings: The study included 313 serum samples from 155 individuals with a history of SARS-CoV-2 infection, divided into subgroups without (n=25) and with SARS-CoV-2 vaccination (n=130). We measured anti-SARS-CoV-2 antibody concentrations by serological assays (anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S) and neutralizing titers against B.1, BA.1, BA.2 and BA.5 in a pseudovirus neutralization assay. Sera of the majority of unvaccinated convalescents did not effectively neutralize Omicron sublineages BA.1, BA.2 and BA.5 (51.7%, 24.1% and 51.7%, resp.). In contrast, 99.3% of the sera of superimmunized individuals (vaccinated convalescents) neutralized the Omicron subvariants BA.1 and BA.5 and 99.6% neutralized BA.2. Neutralizing titers against B.1, BA.1, BA.2 and BA.5 were significantly higher in vaccinated compared to unvaccinated convalescents (p<0.0001) with 52.7-, 210.7-, 141.3- and 105.4-fold higher geometric mean of 50% neutralizing titers (NT50) in vaccinated compared to unvaccinated convalescents. 91.4% of the superimmunized individuals showed neutralization of BA.1, 97.2% of BA.2 and 91.5% of BA.5 with a titer ≥ 640. The increase in neutralizing titers was already achieved by one vaccination dose. Neutralizing titers were highest in the first 3 months after the last immunization event. Concentrations of anti-S antibodies in the anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S assays predicted neutralization capacity against B.1 and Omicron subvariants BA.1, BA.2 and BA.5. Conclusions: These findings confirm substantial immune evasion of the Omicron sublineages, which can be overcome by vaccination of convalescents. This informs strategies for choosing of plasma donors in COVID-19 convalescent plasma programs that shall select specifically vaccinated convalescents with very high titers of anti-S antibodies.


COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , COVID-19/prevention & control , COVID-19 Serotherapy , Vaccination , Antibodies, Viral , Immunoglobulin G
...