Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13668, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608223

ABSTRACT

Coronaviruses have been the causative agent of three epidemics and pandemics in the past two decades, including the ongoing COVID-19 pandemic. A broadly-neutralizing coronavirus therapeutic is desirable not only to prevent and treat COVID-19, but also to provide protection for high-risk populations against future emergent coronaviruses. As all coronaviruses use spike proteins on the viral surface to enter the host cells, and these spike proteins share sequence and structural homology, we set out to discover cross-reactive biologic agents targeting the spike protein to block viral entry. Through llama immunization campaigns, we have identified single domain antibodies (VHHs) that are cross-reactive against multiple emergent coronaviruses (SARS-CoV, SARS-CoV-2, and MERS). Importantly, a number of these antibodies show sub-nanomolar potency towards all SARS-like viruses including emergent CoV-2 variants. We identified nine distinct epitopes on the spike protein targeted by these VHHs. Further, by engineering VHHs targeting distinct, conserved epitopes into multi-valent formats, we significantly enhanced their neutralization potencies compared to the corresponding VHH cocktails. We believe this approach is ideally suited to address both emerging SARS-CoV-2 variants during the current pandemic as well as potential future pandemics caused by SARS-like coronaviruses.


Subject(s)
COVID-19 , Camelids, New World , Single-Domain Antibodies , Humans , Animals , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Pandemics , Epitopes
2.
Front Immunol ; 13: 864775, 2022.
Article in English | MEDLINE | ID: mdl-35603164

ABSTRACT

The SARS-CoV-2 pandemic and particularly the emerging variants have deepened the need for widely available therapeutic options. We have demonstrated that hexamer-enhancing mutations in the Fc region of anti-SARS-CoV IgG antibodies lead to a noticeable improvement in IC50 in both pseudo and live virus neutralization assay compared to parental molecules. We also show that hexamer-enhancing mutants improve C1q binding to target surface. To our knowledge, this is the first time this format has been explored for application in viral neutralization and the studies provide proof-of-concept for the use of hexamer-enhanced IgG1 molecules as potential anti-viral therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin G/genetics , Immunologic Tests , Pandemics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...