Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 186(4): 2201-9, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21239722

ABSTRACT

Autophagy is a highly regulated and evolutionarily conserved process of cellular self-digestion. Recent evidence suggests that this process plays an important role in regulating T cell homeostasis. In this study, we used Rag1(-/-) (recombination activating gene 1(-/-)) blastocyst complementation and in vitro embryonic stem cell differentiation to address the role of Beclin 1, one of the key autophagic proteins, in lymphocyte development. Beclin 1-deficient Rag1(-/-) chimeras displayed a dramatic reduction in thymic cellularity compared with control mice. Using embryonic stem cell differentiation in vitro, we found that the inability to maintain normal thymic cellularity is likely caused by impaired maintenance of thymocyte progenitors. Interestingly, despite drastically reduced thymocyte numbers, the peripheral T cell compartment of Beclin 1-deficient Rag1(-/-) chimeras is largely normal. Peripheral T cells displayed normal in vitro proliferation despite significantly reduced numbers of autophagosomes. In addition, these chimeras had greatly reduced numbers of early B cells in the bone marrow compared with controls. However, the peripheral B cell compartment was not dramatically impacted by Beclin 1 deficiency. Collectively, our results suggest that Beclin 1 is required for maintenance of undifferentiated/early lymphocyte progenitor populations. In contrast, Beclin 1 is largely dispensable for the initial generation and function of the peripheral T and B cell compartments. This indicates that normal lymphocyte development involves Beclin 1-dependent, early-stage and distinct, Beclin 1-independent, late-stage processes.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Autophagy/immunology , Cell Differentiation/immunology , Lymphocyte Subsets/immunology , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/pathology , Beclin-1 , Cell Differentiation/genetics , Coculture Techniques , Embryonic Stem Cells/immunology , Embryonic Stem Cells/pathology , Embryonic Stem Cells/transplantation , Female , Humans , Lymphocyte Subsets/metabolism , Lymphocyte Subsets/pathology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Radiation Chimera/genetics , Radiation Chimera/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , Time Factors
2.
Vis Neurosci ; 26(4): 365-74, 2009.
Article in English | MEDLINE | ID: mdl-19698194

ABSTRACT

The cellular composition of the inner nuclear layer (INL) is largely conserved among mammals. Studies of rabbit, monkey, and mouse retinas have shown that bipolar, amacrine, Müller, and horizontal cells make up constant fractions of the INL (42, 35, 20, and 3%, respectively); these proportions remain relatively constant at all retinal eccentricities. The purpose of our study was to test whether the organization of cat retina is similar to that of other mammalian retinas. Fixed retinas were embedded in plastic, serially sectioned at a thickness of 1 microm, stained, and imaged at high power in the light microscope. Bipolar, amacrine, Müller, and horizontal cells were classified and counted according to established morphological criteria. Additional sets of sections were processed for protein kinase C and calretinin immunoreactivity to determine the relative fraction of rod bipolar and AII amacrine cells. Our results show that the organization of INL in the cat retina contains species-specific alterations in the composition of the INL tied to the large fraction of rod photoreceptors. Compared with other mammalian retinas, cat retinas show an expansion of the rod pathway with rod bipolar cells accounting for about 70% of all bipolar cells and AII cells accounting for nearly a quarter of all amacrine cells. Our results suggest that evolutionary pressures in cats over time have refined their retinal organization to suit its ecological niche.


Subject(s)
Neuroglia/physiology , Neurons/physiology , Retina/anatomy & histology , Retina/physiology , Animals , Calbindin 2 , Cats , Haplorhini , Mice , Nerve Net/cytology , Neural Pathways/cytology , Neural Pathways/physiology , Neuroglia/metabolism , Neurons/metabolism , Protein Kinase C/metabolism , Rabbits , S100 Calcium Binding Protein G/metabolism
3.
J Comp Neurol ; 506(1): 6-15, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17990268

ABSTRACT

The biocytin wide-field bipolar cell in rabbit retina has a broad axonal arbor in layer 5 of the inner plexiform layer and a wide dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the types of cones that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin, and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas.


Subject(s)
Cell Communication , Color Perception/physiology , Rabbits/anatomy & histology , Retinal Bipolar Cells/cytology , Retinal Cone Photoreceptor Cells/cytology , Animals , Dendrites , Immunohistochemistry , Lysine/analogs & derivatives , Presynaptic Terminals , Retinal Bipolar Cells/ultrastructure , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/ultrastructure , Rod Opsins/metabolism
4.
J Comp Neurol ; 472(1): 73-86, 2004 Apr 19.
Article in English | MEDLINE | ID: mdl-15024753

ABSTRACT

The population of bipolar cells in the rabbit retina was studied using Golgi impregnation and photocatalyzed filling of single cells with dihydrorhodamine, a quantitative sampling technique. The Golgi method revealed the morphology and stratification of cells in detail. The photofilling method allowed us to estimate the frequency of the cell types. From a sample of 243 Golgi-impregnated bipolar cells and 107 photofilled cells, we identified 1 type of rod bipolar cell and 12 types of cone bipolar cells. An analysis based on retinal coverage indicates that this number of types could be contained within the number of bipolar cells known to exist. The dendrites of most cone bipolars contacted all the cones within the individual cone bipolar cell's dendritic field. Types of bipolar cell were encountered at roughly similar frequency, without any one type predominating. The rabbit retina thus contains about a dozen parallel and roughly equipotent through-pathways.


Subject(s)
Neurons/classification , Neurons/cytology , Retina/chemistry , Retina/cytology , Animals , Dendrites/chemistry , Neurons/chemistry , Rabbits , Retinal Cone Photoreceptor Cells/chemistry , Retinal Cone Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/chemistry , Retinal Rod Photoreceptor Cells/cytology , Terminology as Topic
5.
J Neurosci ; 22(9): 3831-43, 2002 May 01.
Article in English | MEDLINE | ID: mdl-11978858

ABSTRACT

We report a survey of the population of ganglion cells in the rabbit retina. A random sample of 301 neurons in the ganglion cell layer was targeted for photofilling, a method in which the arbors of the chosen neurons are revealed by diffusion of a photochemically induced fluorescent product from their somas. An additional 129 cells were labeled by microinjection of Lucifer yellow. One hundred and thirty-eight cells were visualized by expression of the gene encoding a green fluorescent protein, introduced by particle-mediated gene transfer. One hundred and sixty-six cells were labeled by particle-mediated introduction of DiI. In the total population of 734 neurons, we could identify 11 types of retinal ganglion cell. An analysis based on retinal coverage shows that this number of ganglion cell types would not exceed the available total number of ganglion cells. Although some uncertainties remain, this sample appears to account for the majority of the ganglion cells present in the rabbit retina. Some known physiological types could easily be mapped onto structural types, but half of them could not; a large set of poorly known codings of the visual input is transmitted to the brain.


Subject(s)
Retinal Ganglion Cells/classification , Retinal Ganglion Cells/physiology , Animals , Biolistics , Cell Count , Cell Size , Dendrites/ultrastructure , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/pharmacokinetics , Genes, Reporter , Green Fluorescent Proteins , In Vitro Techniques , Isoquinolines/administration & dosage , Isoquinolines/pharmacokinetics , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Microinjections , Microspheres , Rabbits , Retinal Ganglion Cells/cytology , Vision, Ocular/physiology , Visual Fields/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...