Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 30(11): 1486-1502.e9, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37922879

ABSTRACT

Organ regeneration requires dynamic cell interactions to reestablish cell numbers and tissue architecture. While we know the identity of progenitor cells that replace lost tissue, the transient states they give rise to and their role in repair remain elusive. Here, using multiple injury models, we find that alveolar fibroblasts acquire distinct states marked by Sfrp1 and Runx1 that influence tissue remodeling and reorganization. Unexpectedly, ablation of alveolar epithelial type-1 (AT1) cells alone is sufficient to induce tissue remodeling and transitional states. Integrated scRNA-seq followed by genetic interrogation reveals RUNX1 is a key driver of fibroblast states. Importantly, the ectopic induction or accumulation of epithelial transitional states induce rapid formation of transient alveolar fibroblasts, leading to organ-wide fibrosis. Conversely, the elimination of epithelial or fibroblast transitional states or RUNX1 loss, leads to tissue simplification resembling emphysema. This work uncovered a key role for transitional states in orchestrating tissue topologies during regeneration.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Lung , Epithelial Cells , Stem Cells , Cell Communication
2.
Am J Respir Cell Mol Biol ; 69(3): 255-265, 2023 09.
Article in English | MEDLINE | ID: mdl-37315312

ABSTRACT

Targeted delivery of transgenes to tissue-resident stem cells and related niches offers avenues for interrogating pathways and editing endogenous alleles for therapeutic interventions. Here, we survey multiple adeno-associated virus (AAV) serotypes, administered via intranasal and retroorbital routes in mice, to target lung alveolar stem cell niches. We found that AAV5, AAV4, and AAV8 efficiently and preferentially transduce alveolar type-2 stem cells (AT2s), endothelial cells, and PDGFRA+ fibroblasts, respectively. Notably, some AAVs show different cell tropisms depending on the route of administration. Proof-of-concept experiments reveal the versatility of AAV5-mediated transgenesis for AT2-lineage labeling, clonal cell tracing after cell ablation, and conditional gene inactivation in both postnatal and adult mouse lungs in vivo. AAV6, but not AAV5, efficiently transduces both mouse and human AT2s in alveolar organoid cultures. Furthermore, AAV5 and AAV6 can be used to deliver guide RNAs and transgene cassettes for homologous recombination in vivo and ex vivo, respectively. Using this system coupled with clonal derivation of AT2 organoids, we demonstrate efficient and simultaneous editing of multiple loci, including targeted insertion of a payload cassette in AT2s. Taken together, our studies highlight the powerful utility of AAVs for interrogating alveolar stem cells and other specific cell types both in vivo and ex vivo.


Subject(s)
Dependovirus , Endothelial Cells , Mice , Animals , Humans , Dependovirus/genetics , Transduction, Genetic , Genetic Vectors , Gene Transfer Techniques , Stem Cells
3.
iScience ; 25(10): 105114, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36185377

ABSTRACT

Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.

4.
Nature ; 604(7904): 111-119, 2022 04.
Article in English | MEDLINE | ID: mdl-35355018

ABSTRACT

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.


Subject(s)
Cell Lineage , Lung , Stem Cells , Alveolar Epithelial Cells , Animals , Cell Differentiation , Connectome , Fibroblasts , Gene Expression Profiling , Humans , Lung/cytology , Lung Diseases , Mice , Organoids , Primates , Regeneration , Single-Cell Analysis , Stem Cells/cytology
5.
J Exp Bot ; 71(3): 1029-1038, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31639823

ABSTRACT

Sigma factors are dissociable subunits of bacterial RNA polymerase that ensure efficient transcription initiation from gene promoters. Owing to their prokaryotic origin, chloroplasts possess a typical bacterial RNA polymerase together with its sigma factor subunit. The higher plant Arabidopsis thaliana contain as many as six sigma factors for the hundred or so of its chloroplast genes. The role of this relatively large number of transcription initiation factors for the miniature chloroplast genome, however, is not fully understood. Using two Arabidopsis T-DNA insertion mutants, we show that sigma factor 1 (SIG1) initiates transcription of a specific subset of chloroplast genes. We further show that the photosynthetic control of PSI reaction center gene transcription requires complementary regulation of the nuclear SIG1 gene at the transcriptional level. This SIG1 gene regulation is dependent on both a plastid redox signal and a light signal transduced by the phytochrome photoreceptor.


Subject(s)
Acclimatization , Chloroplasts/metabolism , Gene Expression Regulation, Plant , Photosynthesis , Plant Proteins/metabolism , Sigma Factor/metabolism , Arabidopsis , Plant Proteins/genetics , Sigma Factor/genetics
6.
Genetics ; 208(3): 1037-1055, 2018 03.
Article in English | MEDLINE | ID: mdl-29263028

ABSTRACT

During antifungal drug treatment and hypoxia, genetic and epigenetic changes occur to maintain sterol homeostasis and cellular function. In this study, we show that SET domain-containing epigenetic factors govern drug efficacy to the medically relevant azole class of antifungal drugs. Upon this discovery, we determined that Set4 is induced when Saccharomyces cerevisiae are treated with azole drugs or grown under hypoxic conditions; two conditions that deplete cellular ergosterol and increase sterol precursors. Interestingly, Set4 induction is controlled by the sterol-sensing transcription factors, Upc2 and Ecm22 To determine the role of Set4 on gene expression under hypoxic conditions, we performed RNA-sequencing analysis and showed that Set4 is required for global changes in gene expression. Specifically, loss of Set4 led to an upregulation of nearly all ergosterol genes, including ERG11 and ERG3, suggesting that Set4 functions in gene repression. Furthermore, mass spectrometry analysis revealed that Set4 interacts with the hypoxic-specific transcriptional repressor, Hap1, where this interaction is necessary for Set4 recruitment to ergosterol gene promoters under hypoxia. Finally, an erg3Δ strain, which produces precursor sterols but lacks ergosterol, expresses Set4 under untreated aerobic conditions. Together, our data suggest that sterol precursors are needed for Set4 induction through an Upc2-mediated mechanism. Overall, this new sterol-signaling pathway governs azole antifungal drug resistance and mediates repression of sterol genes under hypoxic conditions.


Subject(s)
Antifungal Agents/pharmacology , Azoles/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction/drug effects , Sterols/metabolism , Drug Resistance, Fungal , Epigenesis, Genetic , Gene Expression Profiling , Hypoxia/genetics , Hypoxia/metabolism , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...