Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(9): 7638-7646, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363201

ABSTRACT

We have investigated the fragmentation dynamics of the organometallic ferrocene molecule after interaction with multiply charged ions using multicoincidence mass spectrometry and quantum chemistry calculations. We observed unexpected fragmentation dynamics of the two-body breakup channels from ferrocene dications revealing a charge screening effect from the iron atom and delayed fragmentation dynamics. These observations are rationalized through the population of a specific long-lived excited state, where one positive charge is located on each cyclopentadienyl ring.

2.
Nat Commun ; 12(1): 6107, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34671016

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10-100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH+* and PAH2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.

3.
Phys Chem Chem Phys ; 19(30): 19807-19814, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28657102

ABSTRACT

The fragmentation of the isolated 5-bromouracil (5BrU) molecule and pure and nano-hydrated 5BrU clusters induced by low energy 12C4+ ions has been studied. A comparison indicates that the environment, on the one hand, protects the system against the complete break-up into small fragments, but, on the other hand, triggers 'new' pathways for fragmentation, for example the loss of the OH group. The most striking result is the observation of several series of hydrated fragments in the hydrated cluster case, with water molecules bound to hydrophilic sites of 5BrU. This highlights the strong interaction between 5BrU and water molecules and the blocking of specific fragmentation pathways, such as the loss of the BrC2H group for example.

4.
Phys Rev Lett ; 117(7): 073201, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563959

ABSTRACT

The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization.

5.
Phys Chem Chem Phys ; 17(37): 24063-9, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26314495

ABSTRACT

The fragmentation of the 2Br-pyrimidine molecule following direct valence photoionization or inner shell excitation has been studied by electron-ion coincidence experiments. 2Br-pyrimidine has been chosen as a model for the class of pyrimidinic building blocks of three nucleic acids and several radiosensitizers. It is known that the site- and state-localization of energy deposition, typical of inner shell excitation, results in the enhancement of the total ion yield as well as in changes in the relative intensity of the different fragmentation channels. Here we address the question of the origin of this selective fragmentation by using electron-ion coincidence techniques. The results show that the fragmentation is strongly selective in the final singly charged ion state, independently of the process that leads to the population of that state, and the dominant fragmentation patterns correlate with the nearest appearance potential.

6.
J Chem Phys ; 140(22): 224306, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24929387

ABSTRACT

We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH(+)) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH(+) + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C6H5). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.

7.
J Chem Phys ; 139(3): 034309, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23883029

ABSTRACT

We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) → C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.

8.
Phys Rev Lett ; 110(18): 185501, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683214

ABSTRACT

We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C(60) fullerenes. Surprisingly, C(119)(+) and C(118)(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C(59)(+) and C(58)(+) ions--effectively produced in prompt knockout processes with He(2+)--react rapidly with C(60) to form dumbbell C(119)(+) and C(118)(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.


Subject(s)
Alpha Particles , Fullerenes/chemistry , Cations, Divalent/chemistry , Helium/chemistry , Models, Molecular , Molecular Weight , Monte Carlo Method , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...