Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters











Publication year range
1.
J Immunol ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311665

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the leading causes of death due to an infectious agent. Coinfection with HIV exacerbates M. tuberculosis infection outcomes in people living with HIV. Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, is effective in infants, but its efficacy in adolescents and adults is limited. In this study, we investigated the immune responses elicited by BCG administered via i.v. or intradermal (i.d.) routes in SIV-infected Mauritian cynomolgus macaques (MCM) without the confounding effects of M. tuberculosis challenge. We assessed the impact of vaccination on T cell responses in the airway, blood, and tissues (lung, thoracic lymph nodes, and spleen), as well as the expression of cytokines, cytotoxic effectors, and key transcription factors. Our results showed that i.v. BCG induces a robust and sustained immune response, including tissue-resident memory T cells in lungs, polyfunctional CD4+ and CD8αß+ T cells expressing multiple cytokines, and CD8αß+ T cells and NK cells expressing cytotoxic effectors in airways. We also detected higher levels of mycobacteria-specific IgG and IgM in the airways of i.v. BCG-vaccinated MCM. Although i.v. BCG vaccination resulted in an influx of tissue-resident memory T cells in lungs of MCM with controlled SIV replication, MCM with high plasma SIV RNA (>105 copies/ml) typically displayed reduced T cell responses, suggesting that uncontrolled SIV or HIV replication would have a detrimental effect on i.v. BCG-induced protection against M. tuberculosis.

2.
bioRxiv ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39314429

ABSTRACT

Retrospective epidemiological studies suggest that the licensed serogroup B meningococcal vaccine 4CMenB (Bexsero) provides some protection against the closely related pathogen Neisseria gonorrhoeae in humans. This result has been replicated in murine models of gonococcal colonization, with a gonococci-reactive humoral response and more rapid clearance of vaginal infection. However, immunization with Bexsero consistently elicits a robust humoral response but does not protect all individuals, so the correlates of protection remain undefined. Herein, we exploit the fact that Bexsero promotes clearance in only a subset of immunized mice to perform a broad analysis of the adaptive response in animals that are or are not protected. We observe that Bexsero vaccination induces high levels of anti-neisserial antibodies in both serum and the vaginal lumen, and a robust cellular response highlighted by an increase in both conventional naive and memory populations as well as unconventional lymphocyte subsets. Multiplex and flow cytometry results show that Bexsero vaccination generates a robust, multi-faceted cytokine response that spans numerous T cell subsets (TH1, TH2, Treg and TH17 responses) and that non-T non-B lymphocytes play an important role in this response, as indicated by an unbiased principal component analysis. Together, this work provides the first comprehensive analysis of the robust humoral and complex cellular response to Bexsero so as to reveal the effector mechanisms that may contribute to immunity against vaginal gonococcal infection.

3.
bioRxiv ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39091805

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the leading causes of death due to an infectious agent. Coinfection with HIV exacerbates Mtb infection outcomes in people living with HIV (PLWH). Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, is effective in infants, but its efficacy in adolescents and adults is limited. Here, we investigated the immune responses elicited by BCG administered via intravenous (IV) or intradermal (ID) routes in Simian Immunodeficiency Virus (SIV)-infected Mauritian cynomolgus macaques (MCM) without the confounding effects of Mtb challenge. We assessed the impact of vaccination on T cell responses in the airway, blood, and tissues (lung, thoracic lymph nodes, and spleen), as well as the expression of cytokines, cytotoxic molecules, and key transcription factors. Our results showed that IV BCG induces a robust and sustained immune response, including tissue-resident memory T (TRM) cells in lungs, polyfunctional CD4+ and CD8αß+ T cells expressing multiple cytokines, and CD8αß+ T cells and NK cells expressing cytotoxic effectors in airways. We also detected higher levels of mycobacteria-specific IgG and IgM in the airways of IV BCG-vaccinated MCM. Although IV BCG vaccination resulted in an influx of TRM cells in lungs of MCM with controlled SIV replication, MCM with high plasma SIV RNA (>105 copies/mL) typically displayed reduced T cell responses, suggesting that uncontrolled SIV or HIV replication would have a detrimental effect on IV BCG-induced protection against Mtb.

4.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091843

ABSTRACT

Children living with HIV have a higher risk of developing tuberculosis (TB), a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). Gamma delta (γδ) T cells in the context of HIV/Mtb coinfection have been understudied in children, despite in vitro evidence suggesting γδ T cells assist with Mtb control. We investigated whether boosting a specific subset of γδ T cells, phosphoantigen-reactive Vγ9+Vδ2+ cells, could improve TB outcome using a nonhuman primate model of pediatric HIV/Mtb coinfection. Juvenile Mauritian cynomolgus macaques (MCM), equivalent to 4-8-year-old children, were infected intravenously (i.v.) with SIV. After 6 months, MCM were coinfected with a low dose of Mtb and then randomized to receive zoledronate (ZOL), a drug that increases phosphoantigen levels, (n=5; i.v.) at 3- and 17- days after Mtb accompanied by recombinant human IL-2 (s.c.) for 5 days following each ZOL injection. A similarly coinfected MCM group (n=5) was injected with saline as a control. Vγ9+Vδ2+ γδ T cell frequencies spiked in the blood, but not airways, of ZOL+IL-2-treated MCM following the first dose, however, were refractory to the second dose. At necropsy eight weeks after Mtb, ZOL+IL-2 treatment did not reduce pathology or bacterial burden. γδ T cell subset frequencies in granulomas did not differ between treatment groups. These data show that transiently boosting peripheral γδ T cells with ZOL+IL-2 soon after Mtb coinfection of SIV-infected MCM did not improve Mtb host defense.

5.
Immunity ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214090

ABSTRACT

Immunological priming-in the context of either prior infection or vaccination-elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrated that prior Mtb infection elicited a long-lasting protective response against subsequent Mtb exposure and was CD4+ T cell dependent. By analyzing data from primary infection, reinfection, and reinfection-CD4+ T cell-depleted granulomas, we found that the presence of CD4+ T cells during reinfection resulted in a less inflammatory lung milieu characterized by reprogrammed CD8+ T cells, reduced neutrophilia, and blunted type 1 immune signaling among myeloid cells. These results open avenues for developing vaccines and therapeutics that not only target lymphocytes but also modulate innate immune cells to limit tuberculosis (TB) disease.

6.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798646

ABSTRACT

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the route and dose of BCG vaccination from 5×105 CFU ID to 5×107 CFU intravenous (IV) resulted in prevention of infection and disease in a rigorous, highly susceptible non-human primate model of TB. Identifying the immune mechanisms of protection for IV BCG will facilitate development of more effective vaccines against TB. Here, we depleted select lymphocyte subsets in IV BCG vaccinated macaques prior to Mtb challenge to determine the cell types necessary for that protection. Depletion of CD4 T cells or all CD8α expressing lymphoycytes (both innate and adaptive) resulted in loss of protection in most macaques, concomitant with increased bacterial burdens (~4-5 log10 thoracic CFU) and dissemination of infection. In contrast, depletion of only adaptive CD8αß+ T cells did not significantly reduce protection against disease. Our results demonstrate that CD4 T cells and innate CD8α+ lymphocytes are critical for IV BCG-induced protection, supporting investigation of how eliciting these cells and their functions can improve future TB vaccines.

7.
Infect Immun ; 92(4): e0053523, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38514467

ABSTRACT

Concomitant immunity is generally defined as an ongoing infection providing protection against reinfection . Its role in prevention of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is supported by epidemiological evidence in humans as well as experimental evidence in mice and non-human primates (NHPs). Whether the presence of live Mtb, rather than simply persistent antigen, is necessary for concomitant immunity in TB is still unclear. Here, we investigated whether live Mtb plays a measurable role in control of secondary Mtb infection. Using cynomolgus macaques, molecularly barcoded Mtb libraries, positron emission tomography-computed tomography (PET CT) imaging, flow cytometry, and cytokine profiling, we evaluated the effect of antibiotic treatment after primary infection on immunological response and bacterial establishment, dissemination, and burden post-secondary infection. Our data provide evidence that, in this experimental model, treatment with antibiotics after primary infection reduced inflammation in the lung but was not associated with a significant change in bacterial establishment, dissemination, or burden in the lung or lymph nodes. Nonetheless, treatment of the prior infection with antibiotics did result in a modest reduction in protection against reinfection: none of the seven antibiotic-treated animals demonstrated sterilizing immunity against reinfection, while four of the seven non-treated macaques were completely protected against reinfection. These findings support that antibiotic-treated animals were still able to restrict bacterial establishment and dissemination after rechallenge compared to naïve macaques, but not to the full extent of non-antibiotic-treated macaques.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Mice , Reinfection , Tuberculosis/drug therapy , Macaca fascicularis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
9.
bioRxiv ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38187678

ABSTRACT

Concomitant immunity is generally defined as an ongoing infection providing protection against reinfection1. Its role in prevention of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is supported by epidemiological evidence in humans as well as experimental evidence in mice and non-human primates (NHPs). Whether the presence of live Mtb, rather than simply persistent antigen, is necessary for concomitant immunity in TB is still unclear. Here, we investigated whether live Mtb plays a measurable role in control of secondary Mtb infection. Using cynomolgus macaques, molecularly barcoded Mtb libraries, PET-CT imaging, flow cytometry and cytokine profiling we evaluated the effect of antibiotic treatment after primary infection on immunological response and bacterial establishment, dissemination, and burden post-secondary infection. Our data provide evidence that, in this experimental model, treatment with antibiotics after primary infection reduced inflammation in the lung but was not associated with a significant change in bacterial establishment, dissemination or burden in the lung or lymph nodes. Nonetheless, treatment of the prior infection with antibiotics did result in a modest reduction in protection against reinfection: none of the 7 antibiotic treated animals demonstrated sterilizing immunity against reinfection while 4 of the 7 non-treated macaques were completely protected against reinfection. These findings support that antibiotic-treated animals were still able to restrict bacterial establishment and dissemination after rechallenge compared to naïve macaques, but not to the full extent of non-antibiotic treated macaques.

10.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045242

ABSTRACT

Intravenous (IV) BCG delivery provides robust protection against Mycobacterium tuberculosis (Mtb) in macaques but poses safety challenges. Here, we constructed two BCG strains (BCG-TetON-DL and BCG-TetOFF-DL) in which tetracyclines regulate two phage lysin operons. Once the lysins are expressed, these strains are cleared in immunocompetent and immunocompromised mice, yet induced similar immune responses and provided similar protection against Mtb challenge as wild type BCG. Lysin induction resulted in release of intracellular BCG antigens and enhanced cytokine production by macrophages. In macaques, cessation of doxycycline administration resulted in rapid elimination of BCG-TetOFF-DL. However, IV BCG-TetOFF-DL induced increased pulmonary CD4 T cell responses compared to WT BCG and provided robust protection against Mtb challenge, with sterilizing immunity in 6 of 8 macaques, compared to 2 of 8 macaques immunized with WT BCG. Thus, a "suicide" BCG strain provides an additional measure of safety when delivered intravenously and robust protection against Mtb infection.

11.
Nat Microbiol ; 8(11): 2080-2092, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814073

ABSTRACT

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the most common cause of death in people living with human immunodeficiency virus (HIV). Intra-dermal Bacille Calmette-Guérin (BCG) delivery is the only licensed vaccine against tuberculosis; however, it offers little protection from pulmonary tuberculosis in adults and is contraindicated in people living with HIV. Intravenous BCG confers protection against Mtb infection in rhesus macaques; we hypothesized that it might prevent tuberculosis in simian immunodeficiency virus (SIV)-infected macaques, a model for HIV infection. Here intravenous BCG-elicited robust airway T cell influx and elevated plasma and airway antibody titres in both SIV-infected and naive animals. Following Mtb challenge, all 7 vaccinated SIV-naive and 9 out of 12 vaccinated SIV-infected animals were protected, without any culturable bacteria detected from tissues. Peripheral blood mononuclear cell responses post-challenge indicated early clearance of Mtb in vaccinated animals, regardless of SIV infection. These data support that intravenous BCG is immunogenic and efficacious in SIV-infected animals.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Tuberculosis , Animals , Humans , BCG Vaccine , Macaca mulatta , Leukocytes, Mononuclear , Vaccination
12.
J Exp Med ; 220(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37843832

ABSTRACT

The functional role of CD8+ lymphocytes in tuberculosis remains poorly understood. We depleted innate and/or adaptive CD8+ lymphocytes in macaques and showed that loss of all CD8α+ cells (using anti-CD8α antibody) significantly impaired early control of Mycobacterium tuberculosis (Mtb) infection, leading to increased granulomas, lung inflammation, and bacterial burden. Analysis of barcoded Mtb from infected macaques demonstrated that depletion of all CD8+ lymphocytes allowed increased establishment of Mtb in lungs and dissemination within lungs and to lymph nodes, while depletion of only adaptive CD8+ T cells (with anti-CD8ß antibody) worsened bacterial control in lymph nodes. Flow cytometry and single-cell RNA sequencing revealed polyfunctional cytotoxic CD8+ lymphocytes in control granulomas, while CD8-depleted animals were unexpectedly enriched in CD4 and γδ T cells adopting incomplete cytotoxic signatures. Ligand-receptor analyses identified IL-15 signaling in granulomas as a driver of cytotoxic T cells. These data support that CD8+ lymphocytes are required for early protection against Mtb and suggest polyfunctional cytotoxic responses as a vaccine target.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Macaca , Tuberculosis/microbiology , CD8-Positive T-Lymphocytes , Granuloma , CD4-Positive T-Lymphocytes
13.
PLoS Comput Biol ; 19(6): e1010823, 2023 06.
Article in English | MEDLINE | ID: mdl-37319311

ABSTRACT

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.


Subject(s)
Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Mice , Antitubercular Agents , Moxifloxacin/therapeutic use , Tuberculosis/drug therapy
14.
Cell Rep Med ; 4(7): 101096, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37390827

ABSTRACT

Blood-based correlates of vaccine-induced protection against tuberculosis (TB) are urgently needed. Here, we analyze the blood transcriptome of rhesus macaques immunized with varying doses of intravenous (i.v.) BCG followed by Mycobacterium tuberculosis (Mtb) challenge. We use high-dose i.v. BCG recipients for "discovery" and validate our findings in low-dose recipients and in an independent cohort of macaques receiving BCG via different routes. We identify seven vaccine-induced gene modules, including an innate module (module 1) enriched for type 1 interferon and RIG-I-like receptor signaling pathways. Module 1 on day 2 post-vaccination highly correlates with lung antigen-responsive CD4 T cells at week 8 and with Mtb and granuloma burden following challenge. Parsimonious signatures within module 1 at day 2 post-vaccination predict protection following challenge with area under the receiver operating characteristic curve (AUROC) ≥0.91. Together, these results indicate that the early innate transcriptional response to i.v. BCG in peripheral blood may provide a robust correlate of protection against TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Macaca mulatta , BCG Vaccine , Tuberculosis/prevention & control , Tuberculosis/microbiology , Lung
15.
Cell Host Microbe ; 31(6): 962-977.e8, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37267955

ABSTRACT

Bacille Calmette-Guerin (BCG), the only approved Mycobacterium tuberculosis (Mtb) vaccine, provides limited durable protection when administered intradermally. However, recent work revealed that intravenous (i.v.) BCG administration yielded greater protection in macaques. Here, we perform a dose-ranging study of i.v. BCG vaccination in macaques to generate a range of immune responses and define correlates of protection. Seventeen of 34 macaques had no detectable infection after Mtb challenge. Multivariate analysis incorporating longitudinal cellular and humoral immune parameters uncovered an extensive and highly coordinated immune response from the bronchoalveolar lavage (BAL). A minimal signature predicting protection contained four BAL immune features, of which three remained significant after dose correction: frequency of CD4 T cells producing TNF with interferon γ (IFNγ), frequency of those producing TNF with IL-17, and the number of NK cells. Blood immune features were less predictive of protection. We conclude that CD4 T cell immunity and NK cells in the airway correlate with protection following i.v. BCG.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , BCG Vaccine , Macaca mulatta , Vaccination , Tuberculosis/prevention & control
16.
Res Sq ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37090620

ABSTRACT

Tuberculosis (TB) is the most common cause of death in people living with HIV. BCG delivered intradermally (ID) is the only licensed vaccine to prevent TB. However, it offers little protection from pulmonary TB in adults. Intravenous (IV) BCG, but not ID BCG, confers striking protection against Mycobacterium tuberculosis (Mtb) infection and disease in rhesus macaques. We investigated whether IV BCG could protect against TB in macaques with a pre-existing SIV infection. There was a robust influx of airway T cells following IV BCG in both SIV-infected and SIV-naïve animals, with elevated antibody titers in plasma and airways. Following Mtb challenge, all 7 SIV-naïve and 9 out of 12 SIV-infected vaccinated animals were completely protected, without any culturable bacilli in their tissues. PBMC responses post-challenge indicated early clearance of Mtb in vaccinated animals regardless of SIV infection. These data support that IV BCG is immunogenic and efficacious in SIV-infected animals.

17.
mBio ; 14(3): e0047723, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37039646

ABSTRACT

Despite the extensive research on CD4 T cells within the context of Mycobacterium tuberculosis (Mtb) infections, few studies have focused on identifying and investigating the profile of Mtb-specific T cells within lung granulomas. To facilitate the identification of Mtb-specific CD4 T cells, we identified immunodominant epitopes for two Mtb proteins, namely, Rv1196 and Rv0125, using a Mauritian cynomolgus macaque model of Mtb infection, thereby providing data for the synthesis of MHC class II tetramers. Using tetramers, we identified Mtb-specific cells within different immune compartments, postinfection. We found that granulomas were enriched sites for Mtb-specific cells and that tetramer+ cells had increased frequencies of the activation marker CD69 as well as the transcription factors T-bet and RORγT, compared to tetramer negative cells within the same sample. Our data revealed that while the frequency of Rv1196 tetramer+ cells was positively correlated with the granuloma bacterial burden, the frequency of RORγT or T-bet within tetramer+ cells was inversely correlated with the granuloma bacterial burden, thereby highlighting the importance of having activated, polarized, Mtb-specific cells for the control of Mtb in lung granulomas. IMPORTANCE Tuberculosis, caused by the bacterial pathogen Mycobacterium tuberculosis, kills 1.5 million people each year, despite the existence of effective drugs and a vaccine that is given to infants in most countries. Clearly, we need better vaccines against this disease. However, our understanding of the immune responses that are necessary to prevent tuberculosis is incomplete. This study seeks to understand the functions of T cells that are specific for M. tuberculosis at the site of the disease in the lungs. For this, we developed specialized tools called MHC class II tetramers to identify those T cells that can recognize M. tuberculosis and applied the tools to the study of this infection in nonhuman primate models that mimic human tuberculosis. We demonstrate that M. tuberculosis-specific T cells in lung lesions are associated with control of the bacteria only when those T cells are expressing certain functions, thereby highlighting the importance of combining the identification of specific T cells with functional analyses. Thus, we surmise that these functions of specific T cells are critical to the control of infection and should be considered as a part of the development of vaccines against tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Mycobacterium tuberculosis/physiology , CD4-Positive T-Lymphocytes , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Tuberculosis/microbiology , Granuloma , Macaca fascicularis , Transcription Factors/metabolism
18.
Infect Immun ; 91(5): e0055822, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37039653

ABSTRACT

Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.


Subject(s)
Anti-Retroviral Agents , Disease Models, Animal , Macaca , Mycobacterium tuberculosis , Simian Immunodeficiency Virus , Tuberculosis , Humans , Child, Preschool , Child , Animals , Tuberculosis/complications , Tuberculosis/immunology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/immunology , Simian Immunodeficiency Virus/physiology , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocytes/immunology , Anti-Retroviral Agents/administration & dosage , Mycobacterium tuberculosis/physiology
19.
J Infect Dis ; 227(4): 592-601, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36611221

ABSTRACT

Mycobacterium tuberculosis infection outcomes have been described as active tuberculosis or latent infection but a spectrum of outcomes is now recognized. We used a nonhuman primate model, which recapitulates human infection, to characterize the clinical, microbiologic, and radiographic patterns associated with developing latent M. tuberculosis infection. Four patterns were identified. "Controllers" had normal erythrocyte sedimentation rate (ESR) without M. tuberculosis growth in bronchoalveolar lavage or gastric aspirate (BAL/GA). "Early subclinicals" showed transient ESR elevation and/or M. tuberculosis growth on BAL/GA for 60 days postinfection, "mid subclinicals" were positive for 90 days, and "late subclinicals" were positive intermittently, despite the absence of clinical disease. Variability was noted regarding granuloma formation, lung/lymph node metabolic activity, lung/lymph node bacterial burden, gross pathology, and extrapulmonary disease. Like human M. tuberculosis infection, this highlights the heterogeneity associated with the establishment of latent infection, underscoring the need to understand the clinical spectrum and risk factors associated with severe disease.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Latent Tuberculosis/diagnostic imaging , Latent Tuberculosis/microbiology , Lung/pathology , Macaca
20.
J Med Primatol ; 52(1): 24-33, 2023 02.
Article in English | MEDLINE | ID: mdl-36056684

ABSTRACT

BACKGROUND: Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and kills more than 1.5 million people each year. METHODS: We examine the frequency and function of NK cells in the blood and airways over the course of Mtb infection in a TB macaque model and demonstrate differences in NK marker expression between the two compartments. Flow cytometry and intracellular cytokine staining were utilized to identify NK cell subsets (expressing NKG2A, CD56, or CD16) and function (IL-10, TNF, IL-2, IFN-g, IL-17, and CD107a). RESULTS: Blood and airway NK cell frequencies were similar during infection though there were differences in subset populations between blood and airway. Increased functional (cytokine/CD107a) parameters were observed in airway NK cells during the course of infection while none were seen in the blood. CONCLUSIONS: This study suggests that NK cells in the airway may play an important role in TB host response.


Subject(s)
Killer Cells, Natural , Latent Tuberculosis , Lung , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Animals , Cytokines/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Macaca , Mycobacterium tuberculosis/immunology , Disease Models, Animal , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/immunology , Latent Tuberculosis/blood , Latent Tuberculosis/immunology , Lung/immunology
SELECTION OF CITATIONS
SEARCH DETAIL