Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 343: 114355, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37562701

ABSTRACT

The neurohypophysial peptide arginine vasotocin (VT) and its mammalian ortholog, arginine vasopressin, function in physiological and behavioral events. These functions have been identified in neuroendocrinological studies using adult animals; however, there is little information on whether VT is associated with social behavior development in fish. Here, we examined social preference in medaka fish of various ages and investigated how VT expression changes during development. The 1-, 2-, 4-, and 8-week post-hatching (wph) larvae, juveniles, and 5-month-old adults were individually introduced to the grouped fish of each age group, and the social preference index (SPI) was compared among ages based on the time spent in the interaction zone near the grouped fish in a test tank. The SPI was significantly higher in the 4-wph larvae, 8-wph juveniles, and adult fish than in the 1- and 2-wph larvae. VT expression increased with age from 1 to 4 wph. Similarly, the expression was high in 4-wph, 8-wph, and adult fish. Furthermore, it was also found that the SPI and the VT expression decreased in the socially isolated larva during the 4 weeks after hatching compared to the levels in the grouped 4-wph larvae. These findings suggest that social preference develops with age and that conspecifics are necessary for social development in medaka larvae. Furthermore, our results suggest that VT is associated with the development of social preferences in medaka.


Subject(s)
Oryzias , Vasotocin , Animals , Vasotocin/metabolism , Oryzias/metabolism , Social Change , Social Behavior , Mammals/metabolism
2.
Langmuir ; 39(1): 487-494, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36574623

ABSTRACT

ZnO rod film is a promising material for electrodes and sensors due to its large surface area and high electrical conductivity. One of the drawbacks of conventional ZnO rod film is the random orientation of rods. In this study, an oriented ZnO seed layer composed of hexagonal plate-like ZnO particles was prepared by dip-coating. An oriented ZnO rod film was then synthesized by growing this seed layer using a hydrothermal synthesis method. We optimized the concentration of the precursor and the hydrothermal treatment time to synthesize homogeneous ZnO rod arrays. The uniformity of the rod arrays was improved by applying a strong magnetic field (12 T) during hydrothermal treatment.

3.
Aging (Albany NY) ; 14(19): 7662-7691, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36170016

ABSTRACT

Cell aging attenuates cellular functions, resulting in time-dependent disruption of cellular homeostasis, which maintains the functions of proteins and organelles. Mitochondria are important organelles responsible for cellular energy production and various metabolic processes, and their dysfunction is strongly related to the progression of cellular aging. Here we demonstrate that disruption of proteostasis attenuates mitochondrial function before the induction of DNA damage signaling by proliferative and replicative cellular aging. We found that lotus (Nelumbo nucifera Gaertn.) germ extract clears abnormal proteins and agglutinates via autophagy-mediated restoration of mitochondrial function and cellular aging phenotypes. Pharmacological analyses revealed that DAPK1 expression was suppressed in aging cells, and lotus germ extract upregulated DAPK1 expression by stimulating the acetylation of histones and then induced autophagy by activating the DAPK1-Beclin1 signaling pathway. Furthermore, treatment of aging fibroblasts with lotus germ extract stimulated collagen production and increased contractile ability in three-dimensional cell culture. Thus, time-dependent accumulation of abnormal proteins and agglutinates suppressed mitochondrial function in cells in the early stage of aging, and reactivation of mitochondrial function by restoring proteostasis rejuvenated aging cells. Lotus germ extract rejuvenates aging fibroblasts via the DAPK1-Beclin1 pathway-induced autophagy to clear abnormal proteins and agglutinates.


Subject(s)
Lotus , Proteostasis , Histones , Beclin-1 , Autophagy/physiology , Fibroblasts , Plant Extracts
4.
Arch Osteoporos ; 17(1): 17, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35038079

ABSTRACT

Commercial software is generally needed to measure the areal bone mineral density (aBMD) of the proximal femur from clinical computed tomography (CT) images. This study developed and verified an open-source reproducible system to quantify CT-aBMD to screen osteoporosis using clinical CT images. PURPOSE: For existing CT images acquired for various reasons other than osteoporosis, it might be beneficial to estimate areal BMD as assessed by dual-energy X-ray absorptiometry (DXA-based BMD) to ascertain the bone status based on DXA. In this study, we aimed to (1) develop an open-source reproducible measurement system to quantify DXA-based BMD from CT images and (2) validate its accuracy. METHODS: This study analyzed 75 pairs of hip CT and DXA images of women that were acquired for the preoperative assessment of total hip arthroplasty. From the CT images, the femur and a calibration phantom were automatically segmented using pre-trained codes/models available at https://github.com/keisuke-uemura . The proximal femoral region was isolated by manually selected landmarks and was projected onto the coronal plane to measure the areal density (CT-aHU). The calibration phantom was employed to convert the CT-aHU into CT-aBMD. Each parameter was correlated with DXA-based BMD, and the residual errors of CT images to estimate the T-scores in DXA were calculated using the standard error of estimate (SEE). RESULTS: The correlation coefficients of DXA-based BMD with CT-aHU and CT-aBMD were 0.947 and 0.950, respectively (both p < 0.001). The SEE for quantifying the T-scores in DXA were 0.51 and 0.50 for CT-aHU and CT-aBMD, respectively. CONCLUSION: With the method developed herein, CT permits estimation of the DXA-based BMD of the proximal femur within the standard DXA total hip region of interest with an SEE of 0.5 in T-scores. The radiation dose for CT acquisition needs consideration; therefore, our data do not provide a rationale for performing CT for screening osteoporosis. However, on CT images already acquired for clinical indications other than osteoporosis, researchers may use this open-source system to investigate osteoporosis status through the estimated DXA-based BMD of the proximal femur.


Subject(s)
Bone Density , Tomography, X-Ray Computed , Absorptiometry, Photon/methods , Female , Femur/diagnostic imaging , Humans , Reproducibility of Results , Tomography, X-Ray Computed/methods
5.
Sci Rep ; 10(1): 6381, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286493

ABSTRACT

To increase intramuscular fat accumulation, Japanese Black beef cattle are commonly fed a high-grain diet from 10 to 30 months of age. Castrated and fistulated cattle (n = 9) were fed a high-concentrate diets during the early, middle, and late stages consecutively (10-14, 15-22, 23-30 months of age, respectively). Ruminal pH was measured continuously, and rumen epithelium and fluid samples were collected on each stage. The 24-h mean ruminal pH during the late stage was significantly lower than that during the early stage. Total volatile fatty acid (VFA) and lactic acid levels during the late stage were significantly lower and higher, respectively, than those during the early and middle stages. In silico analysis of differentially expressed genes showed that "Oxidative Phosphorylation" was the pathway inhibited most between the middle and early stages in tandem with an inhibited upstream regulator (PPARGC1A, also called PGC-1α) but the most activated pathway between the late and middle stages. These results suggest that mitochondrial dysfunction and thereby impaired cell viability due to acidic irritation under the higher VFA concentration restored stable mitochondrial oxidative phosphorylation and cell viability by higher lactic acid levels used as cellular oxidative fuel under a different underlying mechanism in subacute ruminal acidosis.


Subject(s)
Cattle , Diet/veterinary , Edible Grain , Mitochondria/metabolism , Rumen/chemistry , Acidosis, Lactic/veterinary , Animal Feed , Animals , Fatty Acids, Volatile/analysis , Fermentation , Hydrogen-Ion Concentration , Lactic Acid/analysis , Male , Oxidative Phosphorylation , Transcriptome
6.
PLoS One ; 14(11): e0225448, 2019.
Article in English | MEDLINE | ID: mdl-31770419

ABSTRACT

To increase intramuscular fat accumulation, Japanese Black cattle are commonly fed a high-grain diet from 10 to 30 months of age although it can result in the abnormal accumulation of organic acids in the rumen. We explored the effect of long-term high-concentrate diet feeding on ruminal pH and fermentation, and its effect on the rumen bacterial community in Japanese Black beef cattle during a 20-month fattening period. Nine castrated and fistulated Japanese Black beef cattle were housed with free access to food and water throughout the study period (10-30 months of age). The fattening stages included Early, Middle, and Late stages (10-14, 15-22, and 23-30 months of age, respectively). Cattle were fed high-concentrate diets for the experimental cattle during fattening. The body weight of the cattle was 439 ± 7.6, 561 ± 11.6, and 712 ± 18.5 kg (mean ± SE) during the Early, Middle, and Late stages, respectively. Ruminal pH was measured continuously during the final 7 days of each stage, and rumen fluid and blood samples were collected on day 4 (fourth day during the final 7 days of the pH measurements). The 24-h mean ruminal pH during the Late stage was significantly lower than that during the Early stage. Total volatile fatty acid (VFA) during the Late stage was significantly lower than during the Early and Middle stages, but no changes were noted in individual VFA components. The lactic acid concentration during the Late stage was significantly higher than that during the Early and Middle stages. The bacterial richness indices decreased significantly during the Late stage in accordance with the 24-h mean ruminal pH. Among the 35 bacterial operational taxonomic units (OTUs) shared by all samples, the relative abundances of OTU8 (Family Ruminococcaceae) and OTU26 (Genus Butyrivibrio) were positively correlated with the 24-h mean ruminal pH. Total VFA concentration was negatively correlated with OTU167 (Genus Intestinimonas), and lactic acid concentration was correlated positively with OTU167 and OTU238 (Family Lachnospiraceae). These results suggested that long-term high-grain diet feeding gradually lowers ruminal pH and total VFA production during the Late fattening stage. However, the ruminal bacterial community adapted to feeding management and the lower pH during the Late stage by preserving their diversity or altering their richness, composition, and function, to enhance lactic acid production in Japanese Black beef cattle.


Subject(s)
Diet/veterinary , Gastrointestinal Microbiome , Lactic Acid/metabolism , Rumen/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Body Weight , Butyrivibrio/genetics , Butyrivibrio/isolation & purification , Cattle , Clostridiales/genetics , Clostridiales/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Fatty Acids, Volatile/metabolism , Hydrogen-Ion Concentration , Principal Component Analysis , Rumen/chemistry
7.
iScience ; 12: 280-292, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30731356

ABSTRACT

Cooperative activation using halogen bonding and hydrogen bonding works in metal-catalyzed asymmetric halolactonization. The Zn3(OAc)4-3,3'-bis(aminoimino)binaphthoxide (tri-Zn) complex catalyzes both asymmetric iodolactonization and bromolactonization. Carboxylic acid substrates are converted to zinc carboxylates on the tri-Zn complex, and the N-halosuccinimide (N-bromosuccinimide [NBS] or N-iodosuccinimide [NIS]) is activated by hydrogen bonding with the diamine unit of chiral ligand. Halolactonization is significantly enhanced by the addition of catalytic I2. Density functional theory calculations revealed that a catalytic amount of I2 mediates the alkene portion of the substrates and NIS to realize highly enantioselective iodolactonization. The tri-Zn catalyst activates both sides of the carboxylic acid and alkene moiety, so that asymmetric five-membered iodolactonization of prochiral diallyl acetic acids proceeded to afford the chiral γ-butyrolactones. In the total description of the catalytic cycle, iodolactonization using the NIS-I2 complex proceeds with the regeneration of I2, which enables the catalytic use of I2. The actual iodination reagent is I2 and not NIS.

8.
Sci Rep ; 8(1): 837, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29339816

ABSTRACT

A phosphoiminoBINOL ligand was designed to form a dinuclear metal complex that could hold a malononitrile molecule. The dinuclear bis(phosphoimino)binaphthoxy-Pd2(OAc)2 complex catalyzed a double Mannich reaction of N-Boc-imines with malononitrile to give chiral 1,3-diamines with high enantioselectivity. The rational asymmetric catalyst, which smoothly introduces the first coupling product to the second coupling reaction while avoiding the reverse reaction, facilitates the over-reaction into a productive reaction process.

9.
J Am Chem Soc ; 132(37): 12865-7, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20806919

ABSTRACT

Rhodium-catalyzed asymmetric 1,6-addition of arylboronic acids to ß-alkynyl acrylamides substituted with a silyl group on the alkyne terminus took place to give high yields of axially chiral allenylsilanes with 94-99% enantioselectivity, which was realized by use of a rhodium/chiral diene complex.

SELECTION OF CITATIONS
SEARCH DETAIL