Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Sci ; 344: 112087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599247

ABSTRACT

The circadian clock plays a critical role in regulating plant physiology and metabolism. However, the way in which the clock impacts the regulation of lipid biosynthesis in seeds is partially understood. In the present study, we characterized the seed fatty acid (FA) and glycerolipid (GL) compositions of pseudo-response regulator mutants. Among these mutants, toc1 (timing of cab expression 1) exhibited the most significant differences compared to control plants. These included an increase in total FA content, characterized by elevated levels of linolenic acid (18:3) along with a reduction in linoleic acid (18:2). Furthermore, our findings revealed that toc1 developing seeds showed increased expression of genes related to FA metabolism. Our results show a connection between TOC1 and lipid metabolism in Arabidopsis seeds.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Seeds , alpha-Linolenic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Seeds/metabolism , Seeds/genetics , Seeds/growth & development , alpha-Linolenic Acid/metabolism , Gene Expression Regulation, Plant , Circadian Clocks/genetics , Fatty Acids/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Lipid Metabolism
2.
Metabolites ; 9(10)2019 Sep 29.
Article in English | MEDLINE | ID: mdl-31569524

ABSTRACT

Plant de novo fatty acid synthesis takes place in the plastid using acetyl-coenzyme A (acetyl-CoA) as the main precursor. This first intermediate is produced from pyruvate through the action of the plastidial pyruvate dehydrogenase complex (PDH), which catalyses the oxidative decarboxylation of pyruvate to produce acetyl-CoA, CO2, and NADH. For the proper functioning of this complex, lipoic acid is required to be bound to the dihydrolipoamide S-acetyltransferase E2 subunit of PDH. Octanoyltransferase (LIP2; EC 2.3.1.181) and lipoyl synthase (LIP1; EC 2.8.1.8) are the enzymes involved in the biosynthesis of this essential cofactor. In Arabidopsis plastids, an essential lipoyl synthase (AtLIP1p) and two redundant octanoyltransferases (AtLIP2p1 and AtLIP2p2) have been described. In the present study, the lipidomic characterization of Arabidopsis octanoyltransferase mutants reveals new insight into the lipoylation functions within plastid metabolism. Lipids and fatty acids from mature seeds and seedlings from Atlip2p1 and Atlip2p2 mutants were analysed by gas chromatography (GC) and liquid chromatography-electrospray ionization high-resolution mass spectrometry (LC-ESI-HRMS2), the analysis revealed changes in fatty acid profiles that showed similar patterns in both mutant seeds and seedlings and in the lipid species containing those fatty acids. Although both mutants showed similar tendencies, the lack of the AtLIP2p2 isoform produced a more acute variation in its lipids profile. These changes in fatty acid composition and the increase in their content per seed point to the interference of octanoyltransferases in the fatty acid synthesis flux in Arabidopsis thaliana seeds.

SELECTION OF CITATIONS
SEARCH DETAIL