Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Mol Oncol ; 18(3): 620-640, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38098337

ABSTRACT

The small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) has been implicated in cancer progression and in the poor prognosis of various types of tumors. Rac1 SUMOylation occurs during epithelial-mesenchymal transition (EMT), and it is required for tumor cell migration and invasion. Here we identify POTEE (POTE Ankyrin domain family member E) as a novel Rac1-SUMO1 effector involved in breast cancer malignancy that controls invadopodium formation through the activation of Rac1-SUMO1. POTEE activates Rac1 in the invadopodium by recruiting TRIO-GEF (triple functional domain protein), and it induces tumor cell proliferation and metastasis in vitro and in vivo. We found that the co-localization of POTEE with Rac1 is correlated with more aggressive breast cancer subtypes. Given its role in tumor dissemination, the leading cause of cancer-related deaths, POTEE could represent a potential therapeutic target for these types of cancer.


Subject(s)
Breast Neoplasms , Podosomes , Humans , Female , Signal Transduction , Podosomes/metabolism , rac1 GTP-Binding Protein/metabolism , Cell Movement , Cell Line, Tumor
2.
Front Immunol ; 14: 1223653, 2023.
Article in English | MEDLINE | ID: mdl-38077328

ABSTRACT

Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating ß2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and ß2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.


Subject(s)
Integrins , Neutrophils , Humans , Neutrophils/metabolism , Integrins/metabolism , rac GTP-Binding Proteins/metabolism , 14-3-3 Proteins/metabolism , CD18 Antigens/metabolism
3.
Proc Natl Acad Sci U S A ; 120(40): e2300489120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37748077

ABSTRACT

Lung cancer is the leading cause of cancer deaths. Its high mortality is associated with high metastatic potential. Here, we show that the RAC1-selective guanine nucleotide exchange factor T cell invasion and metastasis-inducing protein 1 (TIAM1) promotes cell migration and invasion in the most common subtype of lung cancer, non-small-cell lung cancer (NSCLC), through an unexpected nuclear function. We show that TIAM1 interacts with TRIM28, a master regulator of gene expression, in the nucleus of NSCLC cells. We reveal that a TIAM1-TRIM28 complex promotes epithelial-to-mesenchymal transition, a phenotypic switch implicated in cell migration and invasion. This occurs through H3K9me3-induced silencing of protocadherins and by decreasing E-cadherin expression, thereby antagonizing cell-cell adhesion. Consistently, TIAM1 or TRIM28 depletion suppresses the migration of NSCLC cells, while migration is restored by the simultaneous depletion of protocadherins. Importantly, high nuclear TIAM1 in clinical specimens is associated with advanced-stage lung adenocarcinoma, decreased patient survival, and inversely correlates with E-cadherin expression.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Protocadherins , Carcinoma, Non-Small-Cell Lung/genetics , Cadherins/genetics , Epigenesis, Genetic , Tripartite Motif-Containing Protein 28 , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
4.
Front Immunol ; 14: 1180886, 2023.
Article in English | MEDLINE | ID: mdl-37383235

ABSTRACT

Introduction: Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens. Methods: Here, we used live cell TIRF-FRET imaging in neutrophils from Rac-FRET reporter mice with deficiencies in the Rac-GEFs Dock2, Tiam1 or Prex1/Vav1 to evaluate if these proteins activate spatiotemporally distinct pools of Rac, and to correlate patterns of Rac activity with the neutrophil responses they control. Results: All the GEFs were required for neutrophil adhesion, and Prex1/Vav1 were important during spreading and for the velocity of migration during chemotaxis. However, Dock2 emerged as the prominent regulator of neutrophil responses, as this GEF was required for neutrophil polarisation and random migration, for migration velocity during chemokinesis, for the likelihood to migrate and for the speed of migration and of turning during chemotaxis, as well as for rapid particle engulfment during phagocytosis. We identified characteristic spatiotemporal patterns of Rac activity generated by Dock2 which correlate with the importance of the Rac-GEF in these neutrophil responses. We also demonstrate a requirement for Dock2 in neutrophil recruitment during aseptic peritonitis. Discussion: Collectively, our data provide a first direct comparison of the pools of Rac activity generated by different types of Rac-GEFs, and identify Dock2 as a key regulator of polarisation, migration and phagocytosis in primary neutrophils.


Subject(s)
GTPase-Activating Proteins , Guanine Nucleotide Exchange Factors , Neutrophils , Phagocytosis , Animals , Mice , Chemotaxis , Cytoskeleton , Guanine Nucleotide Exchange Factors/metabolism , GTPase-Activating Proteins/metabolism
5.
Brain ; 145(12): 4232-4245, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35139179

ABSTRACT

RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors.


Subject(s)
Megalencephaly , Neurodevelopmental Disorders , rac1 GTP-Binding Protein , Animals , Mice , Megalencephaly/genetics , Neurodevelopmental Disorders/genetics , Neurons , NIH 3T3 Cells , Signal Transduction/genetics
6.
Cell Rep ; 37(6): 109979, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758330

ABSTRACT

Small-cell lung cancer (SCLC), an aggressive neuroendocrine malignancy, has limited treatment options beyond platinum-based chemotherapy, whereafter acquired resistance is rapid and common. By analyzing expression data from SCLC tumors, patient-derived models, and established cell lines, we show that the expression of TIAM1, an activator of the small GTPase RAC1, is associated with a neuroendocrine gene program. TIAM1 depletion or RAC1 inhibition reduces viability and tumorigenicity of SCLC cells by increasing apoptosis associated with conversion of BCL2 from its pro-survival to pro-apoptotic function via BH3 domain exposure. This conversion is dependent upon cytoplasmic translocation of Nur77, an orphan nuclear receptor. TIAM1 interacts with and sequesters Nur77 in SCLC cell nuclei and TIAM1 depletion or RAC1 inhibition promotes Nur77 translocation to the cytoplasm. Mutant TIAM1 with reduced Nur77 binding fails to suppress apoptosis triggered by TIAM1 depletion. In conclusion, TIAM1-RAC1 signaling promotes SCLC cell survival via Nur77 nuclear sequestration.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Proto-Oncogene Proteins c-bcl-2/chemistry , Small Cell Lung Carcinoma/pathology , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Gene Expression Profiling , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Protein Conformation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , rac1 GTP-Binding Protein/genetics
7.
Cancer Cell ; 39(9): 1227-1244.e20, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34297917

ABSTRACT

Fibroblasts display extensive transcriptional heterogeneity, yet functional annotation and characterization of their heterocellular relationships remains incomplete. Using mass cytometry, we chart the stromal composition of 18 murine tissues and 5 spontaneous tumor models, with an emphasis on mesenchymal phenotypes. This analysis reveals extensive stromal heterogeneity across tissues and tumors, and identifies coordinated relationships between mesenchymal and immune cell subsets in pancreatic ductal adenocarcinoma. Expression of CD105 demarks two stable and functionally distinct pancreatic fibroblast lineages, which are also identified in murine and human healthy tissues and tumors. Whereas CD105-positive pancreatic fibroblasts are permissive for tumor growth in vivo, CD105-negative fibroblasts are highly tumor suppressive. This restrictive effect is entirely dependent on functional adaptive immunity. Collectively, these results reveal two functionally distinct pancreatic fibroblast lineages and highlight the importance of mesenchymal and immune cell interactions in restricting tumor growth.


Subject(s)
Cancer-Associated Fibroblasts/immunology , Carcinoma, Pancreatic Ductal/immunology , Endoglin/genetics , Pancreatic Neoplasms/immunology , Single-Cell Analysis/methods , Adaptive Immunity , Animals , Carcinoma, Pancreatic Ductal/genetics , Case-Control Studies , Cell Line, Tumor , Cell Plasticity , Endoglin/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Transplantation , Pancreatic Neoplasms/genetics , Tumor Microenvironment
8.
Nat Commun ; 12(1): 2742, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980846

ABSTRACT

Ultraviolet radiation (UVR) damages the dermis and fibroblasts; and increases melanoma incidence. Fibroblasts and their matrix contribute to cancer, so we studied how UVR modifies dermal fibroblast function, the extracellular matrix (ECM) and melanoma invasion. We confirmed UVR-damaged fibroblasts persistently upregulate collagen-cleaving matrix metalloprotein-1 (MMP1) expression, reducing local collagen (COL1A1), and COL1A1 degradation by MMP1 decreased melanoma invasion. Conversely, inhibiting ECM degradation and MMP1 expression restored melanoma invasion. Primary cutaneous melanomas of aged humans show more cancer cells invade as single cells at the invasive front of melanomas expressing and depositing more collagen, and collagen and single melanoma cell invasion are robust predictors of poor melanoma-specific survival. Thus, primary melanomas arising over collagen-degraded skin are less invasive, and reduced invasion improves survival. However, melanoma-associated fibroblasts can restore invasion by increasing collagen synthesis. Finally, high COL1A1 gene expression is a biomarker of poor outcome across a range of primary cancers.


Subject(s)
Collagen/metabolism , Melanoma/metabolism , Melanoma/therapy , Ultraviolet Rays , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Enzyme-Linked Immunosorbent Assay , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Lentivirus/genetics , Mass Spectrometry , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Microscopy, Atomic Force
9.
J Cell Sci ; 134(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33758078

ABSTRACT

Centriole duplication is tightly controlled to maintain correct centriole number through the cell cycle. Key to this is the regulated degradation of PLK4, the master regulator of centriole duplication. Here, we show that the Rac1 guanine nucleotide exchange factor (GEF) Tiam1 localises to centrosomes during S-phase, where it is required for the maintenance of normal centriole number. Depletion of Tiam1 leads to an increase in centrosomal PLK4 and centriole overduplication, whereas overexpression of Tiam1 can restrict centriole overduplication. Ultimately, Tiam1 depletion leads to lagging chromosomes at anaphase and aneuploidy, which are potential drivers of malignant progression. The effects of Tiam1 depletion on centrosomal PLK4 levels and centriole overduplication can be rescued by re-expression of both wild-type Tiam1 and catalytically inactive (GEF*) Tiam1, but not by Tiam1 mutants unable to bind to the F-box protein ßTRCP (also known as F-box/WD repeat-containing protein 1A) implying that Tiam1 regulates PLK4 levels through promoting ßTRCP-mediated degradation independently of Rac1 activation.


Subject(s)
Centrioles , Protein Serine-Threonine Kinases , Cell Cycle , Cell Cycle Proteins/genetics , Centrosome
10.
Biochem Soc Trans ; 48(6): 2703-2719, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33200195

ABSTRACT

The Tiam family proteins - Tiam1 and Tiam2/STEF - are Rac1-specific Guanine Nucleotide Exchange Factors (GEFs) with important functions in epithelial, neuronal, immune and other cell types. Tiam GEFs regulate cellular migration, proliferation and survival, mainly through activating and directing Rac1 signalling. Dysregulation of the Tiam GEFs is significantly associated with human diseases including cancer, immunological and neurological disorders. Uncovering the mechanisms and consequences of dysregulation is therefore imperative to improving the diagnosis and treatment of diseases. Here we compare and contrast the subcellular localisation and function of Tiam1 and Tiam2/STEF, and review the evidence for their dysregulation in disease.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Neoplasms/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , rac GTP-Binding Proteins/metabolism , Animals , Cell Adhesion , Cell Movement , Cell Proliferation , Cell Survival , Humans , Immune System , Nervous System Diseases/metabolism , Neurons/metabolism , Protein Domains , RNA Processing, Post-Transcriptional , Signal Transduction , rac1 GTP-Binding Protein/metabolism
11.
J Cell Sci ; 132(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31289196

ABSTRACT

Oriented cell divisions are important for the formation of normal epithelial structures. Dlg1, a tumour suppressor, is required for mitotic spindle orientation in Drosophila epithelia and chick neuroepithelia, but how Dlg1 is localised to the membrane and its importance in mammalian epithelia are unknown. We show that Dlg1 is required in non-transformed mammalian epithelial cells for oriented cell divisions and normal lumen formation. We demonstrate that the MAGUK protein CASK, a membrane-associated scaffold, is the factor responsible for Dlg1 membrane localisation during spindle orientation, thereby identifying a new cellular function for CASK. Depletion of CASK leads to misoriented divisions in 3D, and to the formation of multilumen structures in cultured kidney and breast epithelial cells. Blocking the CASK-Dlg1 interaction with an interfering peptide, or by deletion of the CASK-interaction domain of Dlg1, disrupts spindle orientation and causes multilumen formation. We show that the CASK-Dlg1 interaction is important for localisation of the canonical LGN-NuMA complex known to be required for spindle orientation. These results establish the importance of the CASK-Dlg1 interaction in oriented cell division and epithelial integrity.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Discs Large Homolog 1 Protein/metabolism , Epithelium/metabolism , Guanylate Kinases/metabolism , Mitosis , Spindle Apparatus/metabolism , Animals , Cell Membrane/metabolism , Dogs , Madin Darby Canine Kidney Cells , Mammals , Protein Binding
12.
Nat Commun ; 9(1): 2124, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844364

ABSTRACT

The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.


Subject(s)
Actin Capping Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Nuclear Envelope/metabolism , rac1 GTP-Binding Protein/metabolism , A549 Cells , Acyltransferases , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Humans , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nonmuscle Myosin Type IIB/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism
13.
Curr Opin Cell Biol ; 54: 50-56, 2018 10.
Article in English | MEDLINE | ID: mdl-29723737

ABSTRACT

RAC1 signalling has been implicated in a variety of dynamic cell biological processes that are orchestrated through regulated localisation and activation of RAC1. As a small GTPase, RAC1 switches between active and inactive states at various subcellular locations that include the plasma membrane, nucleus and mitochondria. Once activated, RAC1 interacts with a range of effectors that then mediate various biological functions. RAC1 is regulated by a large number of proteins that can promote its recruitment, activation, deactivation, or stability. RAC1 and its regulators are subject to various post-translational modifications that further fine tune RAC1 localisation, levels and activity. Developments in technologies have enabled the accurate detection of activated RAC1 during processes such as cell migration, invasion and DNA damage. Here, we highlight recent advances in our understanding of RAC1 regulation and function at specific subcellular sites.


Subject(s)
Cell Compartmentation , Signal Transduction , rac1 GTP-Binding Protein/metabolism , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Humans
14.
Cancer Cell ; 31(5): 621-634.e6, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28416184

ABSTRACT

Aberrant WNT signaling drives colorectal cancer (CRC). Here, we identify TIAM1 as a critical antagonist of CRC progression through inhibiting TAZ and YAP, effectors of WNT signaling. We demonstrate that TIAM1 shuttles between the cytoplasm and nucleus antagonizing TAZ/YAP by distinct mechanisms in the two compartments. In the cytoplasm, TIAM1 localizes to the destruction complex and promotes TAZ degradation by enhancing its interaction with ßTrCP. Nuclear TIAM1 suppresses TAZ/YAP interaction with TEADs, inhibiting expression of TAZ/YAP target genes implicated in epithelial-mesenchymal transition, cell migration, and invasion, and consequently suppresses CRC cell migration and invasion. Importantly, high nuclear TIAM1 in clinical specimens associates with increased CRC patient survival. Together, our findings suggest that in CRC TIAM1 suppresses tumor progression by regulating YAP/TAZ activity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Colorectal Neoplasms/metabolism , Epithelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Intestinal Mucosa/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing/genetics , Animals , Caco-2 Cells , Cell Cycle Proteins , Cell Nucleus/metabolism , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cytoplasm/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Humans , Intestinal Mucosa/pathology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness , Phenotype , Phosphoproteins/genetics , Proteolysis , RNA Interference , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Trans-Activators , Transcription Factors , Transcription, Genetic , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Transfection , Wnt Signaling Pathway , YAP-Signaling Proteins , Zebrafish/embryology , beta-Transducin Repeat-Containing Proteins/genetics , beta-Transducin Repeat-Containing Proteins/metabolism
15.
Small GTPases ; 8(2): 90-99, 2017 04 03.
Article in English | MEDLINE | ID: mdl-27314616

ABSTRACT

GEFs play a critical role in regulating Rac1 signaling. They serve as signaling nodes converting upstream signals into downstream Rac1-driven cellular responses. Through associating with membrane-bound Rac1, GEFs facilitate the exchange of GDP for GTP, thereby activating Rac1. As a result, Rac1 undergoes conformational changes that mediate its interaction with downstream effectors, linking Rac1 to a multitude of physiological and pathological processes. Interestingly, there are at least 20 GEFs involved in Rac1 activation, suggesting a more complex role of GEFs in regulating Rac1 signaling apart from promoting the exchange of GDP for GTP. Indeed, accumulating evidence implicates GEFs in directing the specificity of Rac1-driven signaling cascades, although the underlying mechanisms were poorly defined. Recently, through conducting a comparative study, we highlighted the role of 2 Rac-specific GEFs, Tiam1 and P-Rex1, in dictating the biological outcome downstream of Rac1. Importantly, further proteomic analysis uncovered a GEF activity-independent function for both GEFs in modulating the Rac1 interactome, which results in the stimulation of GEF-specific signaling cascades. Here, we provide an overview of our recent findings and discuss the role of GEFs as master regulators of Rac1 signaling with a particular focus on GEF-mediated modulation of cell migration following Rac1 activation.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism , Animals , Cell Movement , Humans
16.
Small GTPases ; 8(3): 139-163, 2017 07 03.
Article in English | MEDLINE | ID: mdl-27442895

ABSTRACT

Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.


Subject(s)
Molecular Targeted Therapy/methods , Signal Transduction , rac1 GTP-Binding Protein/metabolism , Animals , Enzyme Activation/drug effects , Humans , Nucleotides/metabolism , Signal Transduction/drug effects
17.
EMBO Mol Med ; 9(2): 181-197, 2017 02.
Article in English | MEDLINE | ID: mdl-28003334

ABSTRACT

Cancer genome sequencing projects have identified hundreds of genetic alterations, often at low frequencies, raising questions as to their functional relevance. One exemplar gene is HUWE1, which has been found to be mutated in numerous studies. However, due to the large size of this gene and a lack of functional analysis of identified mutations, their significance to carcinogenesis is unclear. To determine the importance of HUWE1, we chose to examine its function in colorectal cancer, where it is mutated in up to 15 per cent of tumours. Modelling of identified mutations showed that they inactivate the E3 ubiquitin ligase activity of HUWE1. Genetic deletion of Huwe1 rapidly accelerated tumourigenic in mice carrying loss of the intestinal tumour suppressor gene Apc, with a dramatic increase in tumour initiation. Mechanistically, this phenotype was driven by increased MYC and rapid DNA damage accumulation leading to loss of the second copy of Apc The increased levels of DNA damage sensitised Huwe1-deficient tumours to DNA-damaging agents and to deletion of the anti-apoptotic protein MCL1. Taken together, these data identify HUWE1 as a bona fide tumour suppressor gene in the intestinal epithelium and suggest a potential vulnerability of HUWE1-mutated tumours to DNA-damaging agents and inhibitors of anti-apoptotic proteins.


Subject(s)
Carcinogenesis , Colorectal Neoplasms/pathology , DNA Damage , Genes, Tumor Suppressor , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Animals , Gene Deletion , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases/genetics
18.
Cell Cycle ; 15(15): 1961-74, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27152953

ABSTRACT

The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Proteomics/methods , Signal Transduction , rac1 GTP-Binding Protein/metabolism , Animals , Cell Communication , Cell Line, Tumor , Cell Movement , Humans , Isotope Labeling , Mice , NIH 3T3 Cells , Protein Binding , Protein Interaction Mapping , ras GTPase-Activating Proteins/metabolism
19.
Small GTPases ; 7(3): 123-38, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27104658

ABSTRACT

In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers.


Subject(s)
Neoplasms/enzymology , rho GTP-Binding Proteins/metabolism , Animals , DNA Copy Number Variations , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , rho GTP-Binding Proteins/antagonists & inhibitors , rho GTP-Binding Proteins/genetics
20.
Nat Commun ; 7: 10664, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26887924

ABSTRACT

The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner.


Subject(s)
Carrier Proteins/metabolism , Cell Movement , Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism , Actins/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Guanine Nucleotide Exchange Factors/genetics , Humans , Mice , Microfilament Proteins , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Trans-Activators , rac1 GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL