Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 771
Filter
1.
World J Gastrointest Surg ; 16(7): 2119-2126, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39087108

ABSTRACT

BACKGROUND: Surgical resection is the cornerstone treatment for colorectal cancer. Rapid rehabilitation care predicated on evidence-based medical theory aims to improve postoperative nursing care, subsequently reducing the physical and mental traumatic stress response and helping patients who undergo surgery recover rapidly. AIM: To assess the effect of rapid rehabilitation care on clinical outcomes, including overall postoperative complications, anastomotic leaks, wound infections, and intestinal obstruction in patients with colorectal cancer. METHODS: We searched the PubMed, Web of Science, Embase, Elsevier Science Direct, and Springer Link databases from January 1, 2010, to January 1, 2024, to screen eligible studies on rapid rehabilitation care among patients who underwent colorectal cancer surgery. Patients were screened based on the inclusion and exclusion criteria. RevMan 5.4 software was used for statistical analysis of the data. RESULTS: Twelve studies were enrolled, which included 2420 patients. The results showed that rapid rehabilitation care decreased the incidence of overall postoperative complications (OR: 0.44, 95%CI: 0.26-0.74, P = 0.002), anastomotic leaks (OR: 0.68, 95%CI: 0.41-1.12, P = 0.13), wound infections (OR: 0.45, 95%CI: 0.29-0.72, P = 0.0007), and intestinal obstruction (OR: 0.54, 95%CI: 0.34-0.86, P = 0.01) compared to conventional care. Further trials and studies are needed to confirm these results. CONCLUSION: Rapid rehabilitation care decreased the occurrence of postoperative complications, anastomotic leaks, wound infections, and intestinal obstruction compared to conventional care in patients who underwent colorectal surgery. Therefore, promoting the application of rapid rehabilitation care in clinical practice cannot be overemphasized.

2.
Mol Ecol Resour ; : e14002, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092596

ABSTRACT

Populus tomentosa, an indigenous tree species, is widely distributed and cultivated over 1,000,000 km2 in China, contributing significantly to forest production, ecological conservation and urban-rural greening. Although a reference genome is available for P. tomentosa, the intricate interspecific hybrid origins, chromosome structural variations (SVs) and sex determination mechanisms remain confusion and unclear due to its broad and even overlapping geographical distribution, extensive morphological variations and cross infiltration among white poplar species. We conducted a haplotype-resolved de novo assembly of P. tomentosa elite individual GM107, which comprises subgenomes a and b with a total genome size of 714.9 Mb. We then analysed the formation of hybrid species and the phylogenetic evolution and sex differentiation across the entire genus. Phylogenomic analyses suggested that GM107 likely originated from a hybridisation event between P. alba (♀) and P. davidiana (♂) approximately 3.8 Mya. A total of 1551 chromosome SVs were identified between the two subgenomes. More noteworthily, a distinctive inversion structure spanning 2.15-2.95 Mb was unveiled among Populus, Tacamahaca, Turaga, Aigeiros poplar species and Salix, highlighting a unique evolutionary feature. Intriguingly, a novel sex genotype of the ZY type, which represents a crossover between XY and ZW systems, was identified and confirmed through both natural and artificial hybrids populations. These novel insights offer significant theoretical value for the study of the species' evolutionary origins and serve as a valuable resource for ecological genetics and forest biotechnology.

3.
Zhongguo Gu Shang ; 37(7): 700-5, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39104072

ABSTRACT

OBJECTIVE: To investigate the risk factors of postoperative delirium in elderly patients undergoing spine surgery. METHODS: The basic case data of 566 patients who underwent spine surgery under general anesthesia from January 2021 to January 2023 were retrospectively analyzed. There were 296 males and 270 females with an average age of (71.58 ± 4.21) years old. There were 195 cases of cervical spine surgery, 26 cases of thoracic spine surgery and 345 cases of lumbar spine surgery.According to the occurrence of postoperative delirium, the patients were divided into postoperative delirium group(41 patients) and non-delirium group (525 patients). Univariate analysis was used to analyze the possible influencing factors such as gender, age, weight, smoking history, drinking history, surgical site, preoperative anxiety, intraoperative hypotension times, blood loss and so on, and binary Logistic regression was used to analyze the univariate factors with P<0.05. RESULTS: A total of 41 patients developed postoperative delirium. Univariate analysis showed that age (P=0.000), duration of surgery (P=0.039), preoperative anxiety (P=0.001), blood loss (P=0.000), history of opioid use (P=0.003), history of stroke (P=0.005), C-reactive protein (P=0.000), sodium ion(P=0.000) were significantly different between delirium group and non-delirium group. These factors were included in the binary Logistic regression analysis, and the results showed that age [OR=0.729, 95%CI(0.569, 0.932), P=0.012], opioid use [OR=21.500, 95%CI(1.334, 346.508), P=0.031], blood loss [OR=0.932, 95%CI(0.875, 0.993), P=0.029], C-reactive protein [OR=0.657, 95%CI(0.485, 0.890), P=0.007], preoperative anxiety [OR=23.143, 95%CI(1.859, 288.090), P=0.015], and sodium [OR=1.228, 95%CI(1.032, 1.461), P=0.020] were independent risk factors for the development of delirium after spinal surgery in elderly patients. CONCLUSION: Age, opioid use, blood loss, preoperative anxiety, elevated c-reactive protein, and hyponatremia are independent risk factors for the development of postoperative delirium in elderly patients undergoing spinal surgery.


Subject(s)
Delirium , Postoperative Complications , Humans , Male , Female , Aged , Risk Factors , Delirium/etiology , Postoperative Complications/etiology , Retrospective Studies , Spine/surgery , Aged, 80 and over , Logistic Models
4.
Food Res Int ; 192: 114770, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147493

ABSTRACT

Pit mud (PM) is fermenting agents in the strong-flavor baijiu (SFB) production. In this paper, the discrepancies in fermentation parameters, microbial community succession patterns and metabolic phenotypes were compared in multidimensional PMs. The results showed that pyruvic acid, succinic acid, S-Acetyldihydrolipoamide-E, glycerol and glyceric acid were the key metabolites responsible for the metabolic differences between the 2-, 30-,100- and 300-year multidimensional PMs, while the butanoic acid, heptyl, heptanoic acid, heptanoic acid ethyl ester, hexanoic acid and octanoic acid were the key differential flavor compounds in the 2-, 30-,100- and 300-year multidimensional PMs. Concurrently, the diversity and abundance of microbial community also exhibited significant differences between the new and old multidimensional PMs, the assembly pattern of bacterial communities changed from deterministic to stochasticity from lower (bottom of the pit and under the huangshui fluid) to upper PM (up the huangshui fluid and top of the pit). Key microorganisms related to the succession process of the lower PM were Clostridium, Methanobacterium, Petrimonas, Lactobacillus, Methanobrevibacter, Bellilinea, Longilinea, Bacillus. In contrast, the upper PM were Caproicibacter, Longilinea, Lactobacillus, Proteinphilum, Methanobrevibacter, Methanobacterium, Methanobacteriaceae, Petrimonas, Bellilinea and Atopobium. Redundancy analysis (RDA) indicated that the key environmental factors regulating the succession of microbial in upper PM were lactic acid, moisture, pH and available phosphorus. In contrast, the lower was lactic acid, acetic acid and ammonia N. Based on these results, heterogeneous mechanisms between new and old multidimensional PMs were explored, providing a theoretical support for improving the quality of new PM.


Subject(s)
Fermentation , Phenotype , Bacteria/metabolism , Bacteria/classification , Microbiota , Flavoring Agents/metabolism , Food Microbiology , Taste
5.
Bioresour Technol ; : 131189, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127360

ABSTRACT

Vanillin is an important flavouring agent applied in food, spices, pharmaceutical industries and other fields. Microbial biosynthesis of vanillin is considered a sustainable and economically feasible alternative to traditional chemical synthesis. In this study, Escherichia coli K12 MG1655 was used for the de novo synthesis of VAN by screening highly active carboxylic acid reductases and catechol O-methyltransferases, optimising the protocatechuic acid pathway, and regulating competitive metabolic pathways. Additionally, major alcohol by-products were identified and decreased by deleting three endogenous aldo-keto reductases and three alcohol dehydrogenases. Finally, a highest VAN titer was achieved to 481.2 mg/L in a 5 L fermenter from glucose. This work provides a valuable example of pathway engineering and screens several enzyme variants for the first time in E. coli.

6.
Materials (Basel) ; 17(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39124499

ABSTRACT

To investigate the influence of Zn-alloying on the microstructure and tensile mechanical properties of Mg-6Bi alloy after hot extrusion, a new ternary Mg-6Bi-3Zn alloy was prepared by extrusion at 300 °C. The microstructures, texture, dynamic precipitates and tensile mechanical behaviors of the extruded alloy were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), electron backscattered diffraction (EBSD) and a material testing machine at room temperature. After extrusion, the Mg-6Bi-3Zn alloy possesses a bimodal microstructure with elongated large unrecrystallized (unDRXed) grains and fine dynamic recrystallized (DRXed) grains. In addition, non-basal <202_1>//ED, <448_3>//ED and <112_1>//ED textures are observed within DRXed grains due to the Zn addition, leading to texture weakening in the extruded Mg-6Bi-3Zn alloy. Zn addition facilitates the dynamic precipitation behavior, leading to a 12.2% area fraction of Mg3Bi2 precipitates with an average size of 39.2 nm. Furthermore, incorporation of Zn atoms in Mg3Bi2 phases and segregation of Zn at the grain boundary are found. The extruded Mg-6Bi-3Zn alloy exhibits a tensile strength of 336 ± 7.1 MPa and a yield strength of 290 ± 5.5 MPa, as well as an elongation of 11.5%. Therefore, Zn addition is beneficial to enhance strength and keep good ductility for the extruded Mg-6Bi-3Zn alloy.

7.
Phytomedicine ; 133: 155940, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128303

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) could induce multiple forms of cell death, ferroptosis, a novel form of cell death distinct from apoptosis and autophagy, plays an important role in disease progression in TBI. Therapies targeting ferroptosis are beneficial for recovery from TBI. Paeoniflorin (Pae) is a water-soluble monoterpene glycoside and the active ingredient of Paeonia lactiflora pall. It has been shown to exert anti-inflammatory and antioxidant effects. However The effects and mechanisms of paeoniflorin on secondary injury after TBI are unknown. PURPOSE: To investigate the mechanism by which Pae regulates ferroptosis after TBI. METHODS: The TBI mouse model and cortical primary neurons were utilized to study the protective effect of paeoniflorin on the brain tissue after TBI. The neuronal cell ferroptosis model was established by treating cortical primary neurons with erastin. Liproxstatin-1(Lip-1) was used as a positive control drug. Immunofluorescence staining, Nissl staining, biochemical analyses, pharmacological analyses, and western blot were used to evaluate the effects of paeoniflorin on TBI. RESULTS: Pae significantly ameliorated neuronal damage after TBI, inhibited mitochondrial damage, increased glutathione peroxidase 4 (GPX4) activity, decreased malondialdehyde (MDA) production, restored neurological function and inhibited cerebral edema. Pae promotes the degradation of P53 in the form of proteasome, promotes its ubiquitination, and reduces the stability of P53 by inhibiting its acetylation, thus alleviating the P53-mediated inhibition of cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) by P53. CONCLUSION: Pae inhibits ferroptosis by promoting P53 ubiquitination out of the nucleus, inhibiting P53 acetylation, and modulating the SLC7A11-GPX4 pathway.

8.
Adv Sci (Weinh) ; : e2400486, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978328

ABSTRACT

The risk for suffering immune checkpoint inhibitors (ICIs)-associated myocarditis increases in patients with pre-existing conditions and the mechanisms remain to be clarified. Spatial transcriptomics, single-cell RNA sequencing, and flow cytometry are used to decipher how anti-cytotoxic T lymphocyte antigen-4 m2a antibody (anti-CTLA-4 m2a antibody) aggravated cardiac injury in experimental autoimmune myocarditis (EAM) mice. It is found that anti-CTLA-4 m2a antibody increases cardiac fibroblast-derived C-X-C motif chemokine ligand 1 (Cxcl1), which promots neutrophil infiltration to the myocarditic zones (MZs) of EAM mice via enhanced Cxcl1-Cxcr2 chemotaxis. It is identified that the C-C motif chemokine ligand 5 (Ccl5)-neutrophil subpopulation is responsible for high activity of cytokine production, adaptive immune response, NF-κB signaling, and cellular response to interferon-gamma and that the Ccl5-neutrophil subpopulation and its-associated proinflammatory cytokines/chemokines promoted macrophage (Mφ) polarization to M1 Mφ. These altered infiltrating landscape and phenotypic switch of immune cells, and proinflammatory factors synergistically aggravated anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. Neutralizing neutrophils, Cxcl1, and applying Cxcr2 antagonist dramatically alleviates anti-CTLA-4 m2a antibody-induced leukocyte infiltration, cardiac fibrosis, and dysfunction. It is suggested that Ccl5-neutrophil subpopulation plays a critical role in aggravating anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. This data may provide a strategic rational for preventing/curing ICIs-associated myocarditis.

9.
Int J Biol Macromol ; 276(Pt 2): 133681, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971292

ABSTRACT

Extrusion has been proven to be a novel approach for modifying the physicochemical characteristic of Baijiu vinasses (BV) to extract polysaccharides, contributing to the sustainable development of brewing industry. However, the comparison of the bioactivity and bioavailability of extruded (EX) and unextruded (UE) BV polysaccharides was unclear, which impended the determination of the efficacy of extrusion in BV resourcing. In this study, in vitro digestion and fecal fermentation experiments were conducted to investigate the bioavailability, and the results showed that EX exhibited less variation in the monosaccharide composition and molecular weight, while exhibiting a stronger antioxidant capacity compared to UE. Moreover, during fermentation EX increased the abundance of Parasutterella and Lachnospiraceae, while UE promoted the proliferation of Bacteroides, Faecalibacterium, and Dialister, resulting in variation in short-chain fatty acids. These findings indicate that extrusion can enhance the capacity of antioxidants and bioavailability of BV polysaccharides.

10.
Gels ; 10(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39057478

ABSTRACT

Polysaccharides derived from diverse sources exhibit distinct rheological and gel properties, exerting a profound impact on their applicability in the food industry. In this study, we collected five Gracilaria chouae samples from distinct geographical regions, namely Rizhao (RZ), Lianyungang (LYG), Ningde (ND), Beihai (BH), and a wild source from Beihai (BHW). We conducted analyses on the chemical composition, viscosity, and rheological properties, as well as gel properties, to investigate the influence of chemical composition on variations in gel properties. The results revealed that the total sugar, sulfate content, and monosaccharide composition of G. chouae polysaccharides exhibit similarity; however, their anhydrogalactose content varies within a range of 15.31% to 18.98%. The molecular weight distribution of G. chouae polysaccharides ranged from 1.85 to 2.09 × 103 kDa. The apparent viscosity of the LYG and BHW polysaccharides was relatively high, whereas that of RZ and ND was comparatively low. The gel strength displayed a similar trend. BHW and LYG exhibited solid-like behavior, while ND, RZ, and BH demonstrated liquid-like characteristics at low frequencies. The redundancy analysis (RDA) analysis revealed a positive correlation between the texture profile analysis (TPA) characteristics and anhydrogalactose. The study could provide recommendations for the diverse applications of G. chouae polysaccharides derived from different geographical regions.

11.
J Agric Food Chem ; 72(31): 17465-17480, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39046216

ABSTRACT

Elevated levels of biogenic amines (BAs) in fermented food can have negative effects on both the flavor and health. Mining enzymes that degrade BAs is an effective strategy for controlling their content. The study screened a strain of Lactobacillus hilgardii 1614 from fermented food system that can degrade BAs. The multiple copper oxidase genes LHMCO1614 were successfully mined after the whole genome protein sequences of homologous strains were clustered and followed by homology modeling. The enzyme molecules can interact with BAs to stabilize composite structures for catalytic degradation, as shown by molecular docking results. Ingeniously, the kinetic data showed that purified LHMCO1614 was less sensitive to the substrate inhibition of tyramine and phenylethylamine. The degradation rates of tyramine and phenylethylamine in huangjiu (18% vol) after adding LHMCO1614 were 41.35 and 40.21%, respectively. Furthermore, LHMCO1614 demonstrated universality in degrading tyramine and phenylethylamine present in other fermented foods as well. HS-SPME-GC-MS analysis revealed that, except for aldehydes, the addition of enzyme treatment did not significantly alter the levels of major flavor compounds in enzymatically treated fermented foods (p > 0.05). This study presents an enzymatic approach for regulating tyramine and phenylethylamine levels in fermented foods with potential applications both targeted and universal.


Subject(s)
Bacterial Proteins , Fermented Foods , Lactobacillus , Phenethylamines , Tyramine , Tyramine/metabolism , Phenethylamines/metabolism , Phenethylamines/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Lactobacillus/enzymology , Lactobacillus/genetics , Lactobacillus/metabolism , Fermented Foods/microbiology , Fermented Foods/analysis , Molecular Docking Simulation , Kinetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry , Fermentation
12.
EBioMedicine ; 106: 105260, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067134

ABSTRACT

BACKGROUND: Deeper insights into ERBB2-driven cancers are essential to develop new treatment approaches for ERBB2+ breast cancers (BCs). We employed the Collaborative Cross (CC) mouse model to unearth genetic factors underpinning Erbb2-driven mammary tumour development and metastasis. METHODS: 732 F1 hybrid female mice between FVB/N MMTV-Erbb2 and 30 CC strains were monitored for mammary tumour phenotypes. GWAS pinpointed SNPs that influence various tumour phenotypes. Multivariate analyses and models were used to construct the polygenic score and to develop a mouse tumour susceptibility gene signature (mTSGS), where the corresponding human ortholog was identified and designated as hTSGS. The importance and clinical value of hTSGS in human BC was evaluated using public datasets, encompassing TCGA, METABRIC, GSE96058, and I-SPY2 cohorts. The predictive power of mTSGS for response to chemotherapy was validated in vivo using genetically diverse MMTV-Erbb2 mice. FINDINGS: Distinct variances in tumour onset, multiplicity, and metastatic patterns were observed in F1-hybrid female mice between FVB/N MMTV-Erbb2 and 30 CC strains. Besides lung metastasis, liver and kidney metastases emerged in specific CC strains. GWAS identified specific SNPs significantly associated with tumour onset, multiplicity, lung metastasis, and liver metastasis. Multivariate analyses flagged SNPs in 20 genes (Stx6, Ramp1, Traf3ip1, Nckap5, Pfkfb2, Trmt1l, Rprd1b, Rer1, Sepsecs, Rhobtb1, Tsen15, Abcc3, Arid5b, Tnr, Dock2, Tti1, Fam81a, Oxr1, Plxna2, and Tbc1d31) independently tied to various tumour characteristics, designated as a mTSGS. hTSGS scores (hTSGSS) based on their transcriptional level showed prognostic values, superseding clinical factors and PAM50 subtype across multiple human BC cohorts, and predicted pathological complete response independent of and superior to MammaPrint score in I-SPY2 study. The power of mTSGS score for predicting chemotherapy response was further validated in an in vivo mouse MMTV-Erbb2 model, showing that, like findings in human patients, mouse tumours with low mTSGS scores were most likely to respond to treatment. INTERPRETATION: Our investigation has unveiled many new genes predisposing individuals to ERBB2-driven cancer. Translational findings indicate that hTSGS holds promise as a biomarker for refining treatment strategies for patients with BC. FUNDING: The U.S. Department of Defense (DoD) Breast Cancer Research Program (BCRP) (BC190820), United States; MCIN/AEI/10.13039/501100011039 (PID2020-118527RB-I00, PDC2021-121735-I00), the "European Union Next Generation EU/PRTR," the Regional Government of Castile and León (CSI144P20), European Union.

13.
PLoS Biol ; 22(7): e3002679, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38995985

ABSTRACT

Over-generalized fear is a maladaptive response to harmless stimuli or situations characteristic of posttraumatic stress disorder (PTSD) and other anxiety disorders. The dorsal dentate gyrus (dDG) contains engram cells that play a crucial role in accurate memory retrieval. However, the coordination mechanism of neuronal subpopulations within the dDG network during fear generalization is not well understood. Here, with the Tet-off system combined with immunostaining and two-photon calcium imaging, we report that dDG fear engram cells labeled in the conditioned context constitutes a significantly higher proportion of dDG neurons activated in a similar context where mice show generalized fear. The activation of these dDG fear engram cells encoding the conditioned context is both sufficient and necessary for inducing fear generalization in the similar context. Activities of mossy cells in the ventral dentate gyrus (vMCs) are significantly suppressed in mice showing fear generalization in a similar context, and activating the vMCs-dDG pathway suppresses generalized but not conditioned fear. Finally, modifying fear memory engrams in the dDG with "safety" signals effectively rescues fear generalization. These findings reveal that the competitive advantage of dDG engram cells underlies fear generalization, which can be rescued by activating the vMCs-dDG pathway or modifying fear memory engrams, and provide novel insights into the dDG network as the neuronal basis of fear generalization.


Subject(s)
Dentate Gyrus , Fear , Neurons , Animals , Fear/physiology , Dentate Gyrus/physiology , Mice , Male , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Conditioning, Classical/physiology , Memory/physiology , Generalization, Psychological/physiology
14.
Molecules ; 29(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065007

ABSTRACT

The oxidation of benzylic alcohols is an important transformation in modern organic synthesis. A plethora of photoredox protocols have been developed to achieve the aerobic oxidation of alcohols into carbonyls. Recently, several groups described that ultraviolet (UV) or purple light can initiate the aerobic oxidation of benzylic alcohols in the absence of an external catalyst, and depicted different mechanisms involving the photoinduction of •O2- as a critical reactive oxygen species (ROS). However, based on comprehensive mechanistic investigations, including control experiments, radical quenching experiments, EPR studies, UV-vis spectroscopy, kinetics studies, and density functional theory calculations (DFT), we elucidate here that HOO•, which is released via the H2O2 elimination of α-hydroxyl peroxyl radicals [ArCR(OH)OO•], serves as the real chain carrier for the autocatalytic photooxidation of benzylic alcohols. The mechanistic ambiguities depicted in the precedent literature are clarified, in terms of the crucial ROS and its evolution, the rate-limiting step, and the primary radical cascade. This work highlights the necessity of stricter mechanistic analyses on UV-driven oxidative reactions that involve aldehydes' (or ketones) generation.

15.
Cancer Res ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073320

ABSTRACT

Metastasis to the lungs is a leading cause of death for breast cancer patients. Therefore, effective therapies are urgently needed to prevent and treat breast cancer lung metastasis In this study, we uncovered a mechanism by which NAD(P)H:quinone oxidoreductase 1 (NQO1) orchestrates lung metastasis. NQO1 stabilized and upregulated peptidyl-prolyl cis-trans isomerase A (PPIA), a chaperone that regulates protein conformation and activity, by preventing its oxidation at a critical cysteine residue C161. PPIA subsequently activated CD147, a membrane protein that facilitates cell invasion. Moreover, NQO1-induced secretion of PPIA modulated the immune landscape of both primary and lung metastatic sites. Secreted PPIA engaged CD147 on neutrophils and triggered the release of neutrophil extracellular traps (NET) and neutrophil elastase, which enhanced tumor progression, invasiveness and lung colonization. Pharmacological targeting of PPIA effectively inhibited NQO1-mediated breast cancer lung metastasis. These findings reveal a previously unrecognized NQO1-PPIA-CD147-NET axis that drives breast cancer lung metastasis. Inhibiting this axis is a potential therapeutic strategy to limit lung metastasis in breast cancer patients.

16.
Org Lett ; 26(25): 5306-5311, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38869452

ABSTRACT

Dehydration of alcohols is one of the most fundamental transformations in the organic chemistry class and one of the most widely used methods for producing alkenes in synthetic research. Numerous methods and reagents have been developed to control the regio- and stereoselectivity as well as the dehydration efficiency of normal alcohols. Despite these achievements, regio- and stereoselective and predictable dehydration of allylic alcohol has seldom been reported, except for limited substrates with a native preferred elimination position, as a result of the challenges that many potential dienes could be formed via 1,2- or 1,4-syn- or anti-elimination. Here, we report a tBuOK/potassium 2,2-difluoroacetate-mediated 1,4-syn-dehydration of allylic alcohol for the synthesis of regio- and stereodefined conjugated dienes via an in situ generated directing group strategy. This reaction exhibits a broad substrate scope and good functional group compatibility for primary-tertiary alcohols. The simple and scalable (up to 0.6 mol) procedure with readily available and inexpensive reagents makes it a practical method for conjugated diene synthesis. Mechanistic studies reveal that an acetate with tert-butoxide and allyloxide acetal moiety is formed as an intermediate, in which the acetate and the acetal act as the directing group for the base-promoted elimination. An unusual H2 evolution is also involved in the reaction.

17.
Int J Ophthalmol ; 17(6): 1001-1006, 2024.
Article in English | MEDLINE | ID: mdl-38895683

ABSTRACT

AIM: To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy (DR) and in patients with or without diabetic macular edema (DME). METHODS: The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study. The severity of DR patients was graded as mild, moderate and severe non-proliferative diabetic retinopathy (NPDR) according to the international clinical diabetic retinopathy (ICDR) disease severity scale classification, and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods. The presence of DME was determined by optical coherence tomography (OCT), and differences in vascular morphological characteristics were compared between patients with and without DME. RESULTS: Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99% and a Dice metric of 0.76. Compared with the healthy group, the DR group had smaller vessel angles (33.68±3.01 vs 37.78±1.60), smaller fractal dimension (Df) values (1.33±0.05 vs 1.41±0.03), less vessel density (1.12±0.44 vs 2.09±0.36) and fewer vascular branches (206.1±88.8 vs 396.5±91.3), all P<0.001. As the severity of DR increased, Df values decreased, P=0.031. No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics. CONCLUSION: In this study, an artificial intelligence retinal vessel segmentation system is used with 99% accuracy, thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology. DR patients have a tendency of vascular occlusion and dropout. The presence of DME does not compromise the integral retinal vascular pattern.

18.
J Org Chem ; 89(14): 9841-9852, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38917372

ABSTRACT

A novel methodology for the synthesis of nitrones via palladium-catalyzed redox cross-coupling of nitro compounds and alcohols is established. The protocol is a mild, convenient, ligand-free, and scalable synthesis method that can be compatible with various nitro compounds and alcohols. Nitrone is a significant multifunctional platform synthon which can be synthesized directly and efficiently via this tactic from commercially available and cheap raw materials.

19.
ChemSusChem ; : e202400397, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847747

ABSTRACT

Overcoming the significant volume strain in silicon-based anodes has been the focus of research for decades. The strain/stress in silicon-based anodes is inversely proportional to their size. In this study, we design atomic Si sites to achieve the ultimate size effect, which indeed exhibits a zero-strain feature. Compared with conventional silicon-based anodes with alloying addition reactions, the lithium-ion storage mechanism of atomic Si sites is solid-solution reactions, which brings about the zero-strain feature. Additionally, the ligand structure of atomic Si sites remains constant during cycling. This zero-strain feature results in excellent cycling stability. Furthermore, the exposed atomic Si sites enhance the electrochemical reaction kinetics, leading to outstanding rate performance. Moreover, the anode inherits the advantages of silicon-based anodes, including a low working voltage (~0.21 V) and high specific capacity (~2300 mAh g-1 or ~1203 mAh cm-3). This work establishes a novel pathway for designing low/zero-strain anodes.

20.
Sci Rep ; 14(1): 12884, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839838

ABSTRACT

The aim of this study was to develop a real-time risk prediction model for extrauterine growth retardation (EUGR). A total of 2514 very preterm infants were allocated into a training set and an external validation set. The most appropriate independent variables were screened using univariate analysis and Lasso regression with tenfold cross-validation, while the prediction model was designed using binary multivariate logistic regression. A visualization of the risk variables was created using a nomogram, while the calibration plot and receiver operating characteristic (ROC) curves were used to calibrate the prediction model. Clinical efficacy was assessed using the decision curve analysis (DCA) curves. Eight optimal predictors that namely birth weight, small for gestation age (SGA), hypertensive disease complicating pregnancy (HDCP), gestational diabetes mellitus (GDM), multiple births, cumulative duration of fasting, growth velocity and postnatal corticosteroids were introduced into the logistic regression equation to construct the EUGR prediction model. The area under the ROC curve of the training set and the external verification set was 83.1% and 84.6%, respectively. The calibration curve indicate that the model fits well. The DCA curve shows that the risk threshold for clinical application is 0-95% in both set. Introducing Birth weight, SGA, HDCP, GDM, Multiple births, Cumulative duration of fasting, Growth velocity and Postnatal corticosteroids into the nomogram increased its usefulness for predicting EUGR risk in very preterm infants.


Subject(s)
Gestational Age , Infant, Premature , ROC Curve , Humans , Infant, Newborn , Female , Infant, Premature/growth & development , Pregnancy , Male , Nomograms , Birth Weight , Infant, Small for Gestational Age/growth & development , Risk Factors , Diabetes, Gestational/diagnosis , Fetal Growth Retardation/diagnosis , Logistic Models
SELECTION OF CITATIONS
SEARCH DETAIL