Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
C R Biol ; 345(4): 61-110, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36847120

ABSTRACT

Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.


L'élucidation des mécanismes qui contrôlent le développement, le métabolisme et la physiologie des graines est une question fondamentale en biologie. Michel Caboche a longtemps été un catalyseur de la recherche en biologie des graines en France jusqu'à son décès prématuré l'année dernière. Pour honorer sa mémoire, nous avons mis à jour une revue écrite sous sa coordination en 2010 intitulée « Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research ¼. Cette revue englobait différents aspects moléculaires du développement des graines, de l'accumulation des réserves, de la dormance et de la germination, qui sont étudiés dans le laboratoire créé par M. Caboche. Nous avons étendu la portée de cette revue pour mettre en évidence des approches expérimentales originales mises en œuvre dans le domaine au cours de la dernière décennie, telles que les approches omiques visant à étudier le contrôle de l'expression des gènes, les modifications des protéines, les métabolites primaires et spécialisés au niveau des tissus ou même des cellules, tout en tenant compte de la biodiversité des graines et de l'impact de l'environnement sur leur qualité.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Seeds/genetics , Molecular Biology , Biology , France , Germination/genetics , Plant Dormancy/genetics , Gene Expression Regulation, Plant
2.
Int J Mol Sci ; 22(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064729

ABSTRACT

Abscisic acid (ABA) is a key hormone that promotes dormancy during seed development on the mother plant and after seed dispersal participates in the control of dormancy release and germination in response to environmental signals. The modulation of ABA endogenous levels is largely achieved by fine-tuning, in the different seed tissues, hormone synthesis by cleavage of carotenoid precursors and inactivation by 8'-hydroxylation. In this review, we provide an overview of the current knowledge on ABA metabolism in developing and germinating seeds; notably, how environmental signals such as light, temperature and nitrate control seed dormancy through the adjustment of hormone levels. A number of regulatory factors have been recently identified which functional relationships with major transcription factors, such as ABA INSENSITIVE3 (ABI3), ABI4 and ABI5, have an essential role in the control of seed ABA levels. The increasing importance of epigenetic mechanisms in the regulation of ABA metabolism gene expression is also described. In the last section, we give an overview of natural variations of ABA metabolism genes and their effects on seed germination, which could be useful both in future studies to better understand the regulation of ABA metabolism and to identify candidates as breeding materials for improving germination properties.


Subject(s)
Abscisic Acid/metabolism , Germination , Homeostasis , Plant Breeding , Plant Dormancy , Plant Growth Regulators/metabolism , Signal Transduction
3.
Plant Physiol ; 184(3): 1303-1316, 2020 11.
Article in English | MEDLINE | ID: mdl-32883757

ABSTRACT

Abscisic acid (ABA), a plant hormone synthesized from carotenoids, functions in seed germination and abiotic stress responses. ABA is derived from the cleavage of 9-cis-isomers of violaxanthin and neoxanthin, which are oxygenated carotenoids, also called xanthophylls. Although genes encoding enzymes responsible for most steps of the ABA biosynthesis pathway have been identified, enzymatic reactions leading to the production of these cis-isomers from trans-violaxanthin remain poorly understood. Two mutants that lack trans- and cis-neoxanthin, tomato (Solanum lycopersicum) neoxanthin-deficient1 (nxd1) and Arabidopsis (Arabidopsis thaliana) ABA-deficient4 (aba4), were identified previously, but only aba4 exhibited ABA-deficient phenotypes. No enzymatic activity was detected for ABA4 and NXD1 proteins, and their exact function remained unknown. To further investigate ABA4 and NXD1 function in Arabidopsis, we compared phenotypes of single and double mutants, and analyzed the effect of ABA4 overexpression on ABA and carotenoid accumulation in wild-type and mutant backgrounds. We provide convergent evidence that ABA4 is not only required for the formation of trans- and 9'-cis-neoxanthin from trans-violaxanthin, but also controls 9-cis-violaxanthin accumulation. While nxd1 produces high amounts of 9-cis-violaxanthin and ABA, aba4 nxd1 exhibits reduced levels in both leaves and seeds. Furthermore, ABA4 constitutive expression in nxd1 increases both 9-cis-violaxanthin and ABA accumulation. Subcellular localization of NXD1 protein in transient expression assays suggests that production of the NXD1-derived factor required for neoxanthin synthesis takes place in the cytosol. Finally, we postulate that ABA4, with additional unknown cofactor(s), is required for, or contributes to, trans-to-cis violaxanthin isomerase activity, producing both cis-xanthophyll precursors of ABA.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Biosynthetic Pathways/genetics , Dehydration/genetics , Dehydration/physiopathology , Xanthophylls/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Mutation , Phenotype , Stress, Physiological
4.
Plant Physiol ; 180(2): 1198-1218, 2019 06.
Article in English | MEDLINE | ID: mdl-30948555

ABSTRACT

Abscisic acid (ABA) is an important hormone for seed development and germination whose physiological action is modulated by its endogenous levels. Cleavage of carotenoid precursors by 9-cis epoxycarotenoid dioxygenase (NCED) and inactivation of ABA by ABA 8'-hydroxylase (CYP707A) are key regulatory metabolic steps. In Arabidopsis (Arabidopsis thaliana), both enzymes are encoded by multigene families, having distinctive expression patterns. To evaluate the genome-wide impact of ABA deficiency in developing seeds at the maturation stage when dormancy is induced, we used a nced2569 quadruple mutant in which ABA deficiency is mostly restricted to seeds, thus limiting the impact of maternal defects on seed physiology. ABA content was very low in nced2569 seeds, similar to the severe mutant aba2; unexpectedly, ABA Glc ester was detected in aba2 seeds, suggesting the existence of an alternative metabolic route. Hormone content in nced2569 seeds compared with nced259 and wild type strongly suggested that specific expression of NCED6 in the endosperm is mainly responsible for ABA production. In accordance, transcriptome analyses revealed broad similarities in gene expression between nced2569 and either wild-type or nced259 developing seeds. Gene ontology enrichments revealed a large spectrum of ABA activation targets involved in reserve storage and desiccation tolerance, and repression of photosynthesis and cell cycle. Proteome and metabolome profiles in dry nced2569 seeds, compared with wild-type and cyp707a1a2 seeds, also highlighted an inhibitory role of ABA on remobilization of reserves, reactive oxygen species production, and protein oxidation. Down-regulation of these oxidative processes by ABA may have an essential role in dormancy control.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Genomics , Seeds/growth & development , Seeds/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Biosynthetic Pathways/genetics , Cell Cycle , Desiccation , Gene Expression Regulation, Plant , Metabolome , Mutation/genetics , Oxidation-Reduction , Photosynthesis , Plant Dormancy/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seeds/genetics , Signal Transduction/genetics , Transcriptome/genetics
5.
Plants (Basel) ; 7(4)2018 Sep 29.
Article in English | MEDLINE | ID: mdl-30274256

ABSTRACT

The formation of seeds is a reproductive strategy in higher plants that enables the dispersal of offspring through time and space. Eudicot seeds comprise three main components, the embryo, the endosperm and the seed coat, where the coordinated development of each is important for the correct formation of the mature seed. In addition, the seed coat protects the quiescent progeny and can provide transport mechanisms. A key underlying process in the production of seed tissues is the formation of an extracellular matrix termed the cell wall, which is well known for its essential function in cytokinesis, directional growth and morphogenesis. The cell wall is composed of a macromolecular network of polymers where the major component is polysaccharides. The attributes of polysaccharides differ with their composition and charge, which enables dynamic remodeling of the mechanical and physical properties of the matrix by adjusting their production, modification or turnover. Accordingly, the importance of specific polysaccharides or modifications is increasingly being associated with specialized functions within seed tissues, often through the spatio-temporal accumulation or remodeling of particular polymers. Here, we review the evolution and accumulation of polysaccharides during eudicot seed development, what is known of their impact on wall architecture and the diverse roles associated with these in different seed tissues.

6.
Plant Physiol ; 175(2): 708-720, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28830938

ABSTRACT

The current model for vesicular traffic to and from the plasma membrane is accepted, but the molecular requirements for this coordination are not well defined. We have identified the hot ABA-deficiency suppressor1 mutant, which has a stomatal function defect, as a clathrin heavy chain1 (CHC1) mutant allele and show that it has a decreased rate of endocytosis and growth defects that are shared with other chc1 mutant alleles. We used chc1 alleles and the related chc2 mutant as tools to investigate the effects that clathrin defects have on secretion pathways and plant growth. We show that secretion and endocytosis at the plasma membrane are sensitive to CHC1 and CHC2 function in seedling roots and that chc mutants have physiological defects in stomatal function and plant growth that have not been described previously. These findings suggest that clathrin supports specific functions in multiple cell types. Stomata movement and gas exchange are altered in chc mutants, indicating that clathrin is important for stomatal regulation. The aberrant function of chc mutant stomata is consistent with the growth phenotypes observed under different water and light conditions, which also are similar to those of the secretory SNARE mutant, syp121 The syp121 and chc mutants have impaired endocytosis and exocytosis compared with the wild type, indicating a link between SYP121-dependent secretion and clathrin-dependent endocytosis at the plasma membrane. Our findings provide evidence that clathrin and SYP121 functions are important for the coordination of endocytosis and exocytosis and have an impact on stomatal function, gas exchange, and vegetative growth in Arabidopsis (Arabidopsis thaliana).


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Clathrin Heavy Chains/metabolism , Endocytosis/genetics , Qa-SNARE Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Biological Transport , Cell Membrane/metabolism , Clathrin Heavy Chains/genetics , Genotype , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/physiology , Plant Stomata/cytology , Plant Stomata/genetics , Plant Stomata/physiology , Qa-SNARE Proteins/genetics , Seedlings/cytology , Seedlings/genetics , Seedlings/physiology
7.
BMC Plant Biol ; 16(1): 198, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27613195

ABSTRACT

BACKGROUND: In seeds, the transition from dormancy to germination is regulated by abscisic acid (ABA) and gibberellins (GAs), and involves chromatin remodelling. Particularly, the repressive mark H3K27 trimethylation (H3K27me3) has been shown to target many master regulators of this transition. DAG1 (DOF AFFECTING GERMINATION1), is a negative regulator of seed germination in Arabidopsis, and directly represses the GA biosynthetic gene GA3ox1 (gibberellin 3-ß-dioxygenase 1). We set to investigate the role of DAG1 in seed dormancy and maturation with respect to epigenetic and hormonal control. RESULTS: We show that DAG1 expression is controlled at the epigenetic level through the H3K27me3 mark during the seed-to-seedling transition, and that DAG1 directly represses also the ABA catabolic gene CYP707A2; consistently, the ABA level is lower while the GA level is higher in dag1 mutant seeds. Furthermore, both DAG1 expression and protein stability are controlled by GAs. CONCLUSIONS: Our results point to DAG1 as a key player in the control of the developmental switch between seed dormancy and germination.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Gibberellins/metabolism , Seedlings/metabolism , Seeds/metabolism , Transcription Factors/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , Seedlings/genetics , Seedlings/growth & development , Seeds/genetics , Seeds/growth & development , Transcription Factors/genetics
8.
Plant Sci ; 246: 91-97, 2016 May.
Article in English | MEDLINE | ID: mdl-26993239

ABSTRACT

Nine-cis-epoxycarotenoid dioxygenase (NCED) catalyzes the key step of abscisic acid (ABA) biosynthesis. There are five genes encoding NCED in Arabidopsis, which differentially regulate ABA biosynthesis in a spatiotemporal manner in response to endogenous and environmental stimuli. Previous studies have shown that NCED9 is expressed in testa and embryos during seed development. In the present study, we have identified promoter regions required for the expression of NCED9 in testa and embryos, respectively. Electrophoretic mobility shift assays (EMSA) and yeast one-hybrid (Y1H) assays showed that several homeodomain-leucine zipper (HD-Zip) proteins, namely ATHBs, bound to the sequence required for expression of NCED9 in testa, suggesting that they redundantly regulate NCED9 expression. By expressing the NCED9 gene under the control of a deleted NCED9 promoter in an nced9 mutant expression was limited to embryos. Transformants were complemented for the paclobutrazol resistant germination phenotype of the mutant, suggesting that the ABA synthesis mediated by NCED9 in embryos plays an important role in the regulation of gibberellin (GA)-dependent seed germination.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/embryology , Arabidopsis/genetics , Dioxygenases/genetics , Plant Proteins/genetics , Promoter Regions, Genetic , Seeds/genetics , Arabidopsis/drug effects , Base Sequence , Dioxygenases/metabolism , Gene Expression Regulation, Plant/drug effects , Genetic Complementation Test , Germination/drug effects , Germination/genetics , Gibberellins/pharmacology , Mutation/genetics , Plant Proteins/metabolism , Protein Binding/drug effects , Seeds/drug effects , Sequence Deletion/genetics , Transgenes
9.
Plant Physiol ; 170(3): 1367-80, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26826221

ABSTRACT

Cell wall remodeling is an essential mechanism for the regulation of plant growth and architecture, and xyloglucans (XyGs), the major hemicellulose, are often considered as spacers of cellulose microfibrils during growth. In the seed, the activity of cell wall enzymes plays a critical role in germination by enabling embryo cell expansion leading to radicle protrusion, as well as endosperm weakening prior to its rupture. A screen for Arabidopsis (Arabidopsis thaliana) mutants affected in the hormonal control of germination identified a mutant, xyl1, able to germinate on paclobutrazol, an inhibitor of gibberellin biosynthesis. This mutant also exhibited reduced dormancy and increased resistance to high temperature. The XYL1 locus encodes an α-xylosidase required for XyG maturation through the trimming of Xyl. The xyl1 mutant phenotypes were associated with modifications to endosperm cell wall composition that likely impact on its resistance, as further demonstrated by the restoration of normal germination characteristics by endosperm-specific XYL1 expression. The absence of phenotypes in mutants defective for other glycosidases, which trim Gal or Fuc, suggests that XYL1 plays the major role in this process. Finally, the decreased XyG abundance in hypocotyl longitudinal cell walls of germinating embryos indicates a potential role in cell wall loosening and anisotropic growth together with pectin de-methylesterification.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Glucans/metabolism , Xylans/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Endosperm/growth & development , Endosperm/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Germination/drug effects , Germination/genetics , Germination/physiology , Mutation , Plants, Genetically Modified , Protein Processing, Post-Translational , Seeds/growth & development , Seeds/metabolism , Triazoles/pharmacology , Xylosidases/genetics , Xylosidases/metabolism
10.
Plant Cell Physiol ; 57(4): 660-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26637538

ABSTRACT

Mature seeds are an ultimate physiological status that enables plants to endure extreme conditions such as high and low temperature, freezing and desiccation. Seed longevity, the period over which seed remains viable, is an important trait not only for plant adaptation to changing environments, but also, for example, for agriculture and conservation of biodiversity. Reduction of seed longevity is often associated with oxidation of cellular macromolecules such as nucleic acids, proteins and lipids. Seeds possess two main strategies to combat these stressful conditions: protection and repair. The protective mechanism includes the formation of glassy cytoplasm to reduce cellular metabolic activities and the production of antioxidants that prevent accumulation of oxidized macromolecules during seed storage. The repair system removes damage accumulated in DNA, RNA and proteins upon seed imbibition through enzymes such as DNA glycosylase and methionine sulfoxide reductase. In addition to longevity, dormancy is also an important adaptive trait that contributes to seed lifespan. Studies in Arabidopsis have shown that the seed-specific transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3) plays a central role in ABA-mediated seed dormancy and longevity. Seed longevity largely relies on the viability of embryos. Nevertheless, characterization of mutants with altered seed coat structure and constituents has demonstrated that although the maternally derived cell layers surrounding the embryos are dead, they have a significant impact on longevity.


Subject(s)
Plant Dormancy/physiology , Seeds/physiology , DNA Repair , Oxidative Stress , Polyphenols/metabolism , RNA, Plant/physiology , Seeds/cytology , Signal Transduction , Waxes
11.
Mol Plant ; 8(4): 644-56, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25708384

ABSTRACT

The hot ABA-deficiency suppressor2 (has2) mutation increases drought tolerance and the ABA sensitivity of stomata closure and seed germination. Here we report that the HAS2 locus encodes the mitochondrial editing factor11 (MEF11), also known as lovastatin insensitive1. has2/mef11 mutants exhibited phenotypes very similar to the ABA-hypersensitive mutant, hai1-1 pp2ca-1 hab1-1 abi1-2, which is impaired in four genes encoding type 2C protein phosphatases (PP2C) that act as upstream negative regulators of the ABA signaling cascade. Like pp2c, mef11 plants were more resistant to progressive water stress and seed germination was more sensitive to paclobutrazol (a gibberellin biosynthesis inhibitor) as well as mannitol and NaCl, compared with the wild-type plants. Phenotypic alterations in mef11 were associated with the lack of editing of transcripts for the mitochondrial cytochrome c maturation FN2 (ccmFN2) gene, which encodes a cytochrome c-heme lyase subunit involved in cytochrome c biogenesis. Although the abundance of electron transfer chain complexes was not affected, their dysfunction could be deduced from increased respiration and altered production of hydrogen peroxide and nitric oxide in mef11 seeds. As minor defects in mitochondrial respiration affect ABA signaling, this suggests an essential role for ABA in mitochondrial retrograde regulation.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , RNA Editing/physiology , RNA/physiology , Signal Transduction/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA/genetics , RNA Editing/genetics , RNA, Mitochondrial , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction/genetics
12.
PLoS Genet ; 10(3): e1004221, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24625826

ABSTRACT

Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 ß-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Seeds/growth & development , beta-Galactosidase/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Evolution, Molecular , Magnetic Resonance Spectroscopy , Mutation , Plant Mucilage/genetics , Seeds/genetics , Water/chemistry , Water/metabolism
13.
Front Plant Sci ; 4: 63, 2013.
Article in English | MEDLINE | ID: mdl-23531630

ABSTRACT

Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

14.
Plant Cell ; 25(1): 308-23, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23362209

ABSTRACT

Imbibed seeds of the Arabidopsis thaliana accession Djarly are affected in mucilage release from seed coat epidermal cells. The impaired locus was identified as a pectin methylesterase inhibitor gene, PECTIN METHYLESTERASE INHIBITOR6 (PMEI6), specifically expressed in seed coat epidermal cells at the time when mucilage polysaccharides are accumulated. This spatio-temporal regulation appears to be modulated by GLABRA2 and LEUNIG HOMOLOG/MUCILAGE MODIFIED1, as expression of PMEI6 is reduced in mutants of these transcription regulators. In pmei6, mucilage release was delayed and outer cell walls of epidermal cells did not fragment. Pectin methylesterases (PMEs) demethylate homogalacturonan (HG), and the majority of HG found in wild-type mucilage was in fact derived from outer cell wall fragments. This correlated with the absence of methylesterified HG labeling in pmei6, whereas transgenic plants expressing the PMEI6 coding sequence under the control of the 35S promoter had increased labeling of cell wall fragments. Activity tests on seeds from pmei6 and 35S:PMEI6 transgenic plants showed that PMEI6 inhibits endogenous PME activities, in agreement with reduced overall methylesterification of mucilage fractions and demucilaged seeds. Another regulator of PME activity in seed coat epidermal cells, the subtilisin-like Ser protease SBT1.7, acts on different PMEs, as a pmei6 sbt1.7 mutant showed an additive phenotype.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Pectins/metabolism , Plant Epidermis/enzymology , Plant Mucilage/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Cell Wall/metabolism , Esterification , Methylation , Mutation , Pectins/analysis , Phenotype , Plant Epidermis/genetics , Plant Mucilage/analysis , Plants, Genetically Modified , Seeds/enzymology , Seeds/genetics , Subtilisins/genetics , Subtilisins/metabolism
15.
Plant J ; 70(3): 501-12, 2012 May.
Article in English | MEDLINE | ID: mdl-22171989

ABSTRACT

Carotenoid cleavage, catalyzed by the 9-cis-epoxycarotenoid dioxygenase (NCED) constitutes a key step in the regulation of ABA biosynthesis. In Arabidopsis, this enzyme is encoded by five genes. NCED3 has been shown to play a major role in the regulation of ABA synthesis in response to water deficit, whereas NCED6 and NCED9 have been shown to be essential for the ABA production in the embryo and endosperm that imposes dormancy. Reporter gene analysis was carried out to determine the spatiotemporal pattern of NCED5 and NCED9 gene expression. GUS activity from the NCED5 promoter was detected in both the embryo and endosperm of developing seeds with maximal staining after mid-development. NCED9 expression was found at early stages in the testa outer integument layer 1, and after mid-development in epidermal cells of the embryo, but not in the endosperm. In accordance with its temporal- and tissue-specific expression, the phenotypic analysis of nced5 nced6 nced9 triple mutant showed the involvement of the NCED5 gene, together with NCED6 and NCED9, in the induction of seed dormancy. In contrast to nced6 and nced9, however, nced5 mutation did not affect the gibberellin required for germination. In vegetative tissues, combining nced5 and nced3 mutations reduced vegetative growth, increased water loss upon dehydration, and decreased ABA levels under both normal and stressed conditions, as compared with nced3. NCED5 thus contributes, together with NCED3, to ABA production affecting plant growth and water stress tolerance.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/enzymology , Dioxygenases/genetics , Gene Expression Regulation, Plant/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Seeds/growth & development , Abscisic Acid/analysis , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Dehydration , Dioxygenases/metabolism , Droughts , Genes, Reporter , Germination , Gibberellins/metabolism , Mutation , Organ Specificity , Phenotype , Plant Dormancy , Plant Growth Regulators/analysis , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Seedlings/enzymology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seeds/enzymology , Seeds/genetics , Seeds/physiology , Water/metabolism
16.
Plant Physiol ; 156(4): 1725-39, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21705653

ABSTRACT

Imbibed Arabidopsis (Arabidopsis thaliana) seeds are encapsulated by mucilage that is formed of hydrated polysaccharides released from seed coat epidermal cells. The mucilage is structured with water-soluble and adherent layers, with cellulose present uniquely in an inner domain of the latter. Using a reverse-genetic approach to identify the cellulose synthases (CESAs) that produce mucilage cellulose, cesa5 mutants were shown to be required for the correct formation of these layers. Expression of CESA5 in the seed coat was specific to epidermal cells and coincided with the accumulation of mucilage polysaccharides in their apoplast. Analysis of sugar composition showed that although total sugar composition or amounts were unchanged, their partition between layers was different in the mutant, with redistribution from adherent to water-soluble mucilage. The macromolecular characteristics of the water-soluble mucilage were also modified. In accordance with a role for CESA5 in mucilage cellulose synthesis, crystalline cellulose contents were reduced in mutant seeds and birefringent microfibrils were absent from adherent mucilage. Although the mucilage-modified5 mutant showed similar defects to cesa5 in the distribution of sugar components between water-soluble and adherent mucilage, labeling of residual adherent mucilage indicated that cesa5 contained less cellulose and less pectin methyl esterification. Together, the results demonstrate that CESA5 plays a major and essential role in cellulose production in seed mucilage, which is critical for the establishment of mucilage structured in layers and domains.


Subject(s)
Adhesives/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cellulose/biosynthesis , Glucosyltransferases/metabolism , Seeds/enzymology , Adhesiveness , Alleles , Arabidopsis/cytology , Arabidopsis/ultrastructure , Carbohydrate Metabolism , Cell Differentiation , Crystallization , Macromolecular Substances/metabolism , Monosaccharides/metabolism , Mutation/genetics , Phenotype , Plant Epidermis/cytology , Plant Epidermis/enzymology , Plant Epidermis/ultrastructure , Seeds/cytology , Seeds/ultrastructure , Solubility , Staining and Labeling , Water
17.
PLoS One ; 6(5): e20243, 2011.
Article in English | MEDLINE | ID: mdl-21633512

ABSTRACT

On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation. The defective genes imparted no apparent modification to ABA production on water deficit, were inherited recessively and enhanced ABA responses indicating that the proteins encoded are negative regulators of ABA signalling. All three mutants showed ABA-hypersensitive stomata closure and inhibition of root elongation with little modification of growth and development in non-stressed conditions. The has2 mutant also exhibited increased germination inhibition by ABA, while ABA-inducible gene expression was not modified on dehydration, indicating the mutated gene affects early ABA-signalling responses that do not modify transcript levels. In contrast, weak ABA-hypersensitivity relative to mutant developmental phenotypes suggests that HAS3 regulates drought responses by both ABA-dependent and independent pathways. has1 mutant phenotypes were only apparent on stress or ABA treatments, and included reduced water loss on rapid dehydration. The HAS1 locus thus has the required characteristics for a targeted approach to improving resistance to water deficit. In contrast to has2, has1 exhibited only minor changes in susceptibility to Dickeya dadantii despite similar ABA-hypersensitivity, indicating that crosstalk between ABA responses to this pathogen and drought stress can occur through more than one point in the signalling pathway.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Enterobacteriaceae/physiology , Mutation , Water/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Host-Pathogen Interactions , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Temperature
18.
Plant J ; 61(6): 971-81, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20409271

ABSTRACT

Seeds play a fundamental role in colonization of the environment by spermatophytes, and seeds harvested from crops are the main food source for human beings. Knowledge of seed biology is therefore important for both fundamental and applied issues. This review on seed biology illustrates the important progress made in the field of Arabidopsis seed research over the last decade. Access to 'omics' tools, including the inventory of genes deduced from sequencing of the Arabidopsis genome, has speeded up the analysis of biological functions operating in seeds. This review covers the following processes: seed and seed coat development, seed reserve accumulation, seed dormancy and seed germination. We present new insights in these various fields and describe ongoing biotechnology approaches to improve seed characteristics in crops.


Subject(s)
Arabidopsis/genetics , Genomics , Seeds/growth & development , Arabidopsis/growth & development , Arabidopsis/metabolism , Biotechnology/trends , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genome, Plant , Germination , Plant Growth Regulators/metabolism , Seed Storage Proteins/metabolism , Seeds/genetics , Seeds/metabolism
19.
Mol Plant ; 1(1): 145-54, 2008 Jan.
Article in English | MEDLINE | ID: mdl-20031921

ABSTRACT

Light and temperature are key external factors in the control of Arabidopsis thaliana seed germination and dormancy mechanisms. Perception and response to these stimuli have to ensure that seedling emergence and growth occur at the most advantageous time for correct establishment. Analysis of over 300 Arabidopsis accessions identified 14, from 12 different geographical locations, that were able to germinate to greater than 20% at 6 degrees C in the dark. This natural variation was exploited to identify genetic loci responsible for cold-tolerant, dark germination. A quantitative trait loci approach was used on recombinant inbred line progeny of a cross between Bay-0 and Shahdara. Six distinct quantitative trait loci were identified, three of which were major loci, each responsible for 17-25% of the phenotypic variability in this trait. Parental phenotypes indicated that the majority of the cold-tolerant, dark-germination characteristics are related to light responses. Validation of the three major loci using heterogeneous inbred families confirmed the feasibility of fine mapping and cloning the genes at the quantitative trait loci responsible for cold-tolerant, dark germination.


Subject(s)
Arabidopsis/physiology , Genetic Variation , Germination/radiation effects , Light , Quantitative Trait Loci/radiation effects , Arabidopsis/genetics , Arabidopsis/radiation effects , Cold Temperature , Darkness , France , Geography , Homozygote , Phenotype , Quantitative Trait Loci/genetics , Signal Transduction/radiation effects , Temperature
20.
Plant Cell Environ ; 31(2): 227-34, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17996011

ABSTRACT

Several plant hormones, including auxin, brassinosteroids and gibberellins, are required for skotomorphogenesis, which is the etiolated growth that seedlings undergo in the absence of light. To examine the growth of abscisic acid (ABA)-deficient mutants in the dark, we analysed several aba1 loss-of-function alleles, which are deficient in zeaxanthin epoxidase. The aba1 mutants displayed a partially de-etiolated phenotype, including reduced hypocotyl growth, cotyledon expansion and the development of true leaves, during late skotomorphogenic growth. In contrast, only small differences in hypocotyl growth were found between wild-type seedlings and ABA-deficient mutants impaired in subsequent steps of the pathway, namely nced3, aba2, aba3 and aao3. Interestingly, phenocopies of the partially de-etiolated phenotype of the aba1 mutants were obtained when wild-type seedlings were dark-grown on medium supplemented with fluridone, an inhibitor of phytoene desaturase, and hence, of carotenoid biosynthesis. ABA supplementation did not restore the normal skotomorphogenic growth of aba1 mutants or fluridone-treated wild-type plants, suggesting a direct inhibitory effect of fluridone on carotenoid biosynthesis. In addition, aba1 mutants showed impaired production of the beta-carotene-derived xanthophylls, neoxanthin, violaxanthin and antheraxanthin. Because fluridone treatment of wild-type plants phenocopied the phenotype of dark-grown aba1 mutants, impaired carotenoid biosynthesis in aba1 mutants is probably responsible for the observed skotomorphogenic phenotype. Thus, ABA1 is required for skotomorphogenic growth, and beta-carotene-derived xanthophylls are putative regulators of skotomorphogenesis.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Carotenoids/biosynthesis , Genes, Plant , Oxidoreductases/genetics , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Carotenoids/chemistry , Darkness , Gene Expression Regulation, Plant/drug effects , Hypocotyl/drug effects , Hypocotyl/growth & development , Mutation/genetics , Oxidoreductases/metabolism , Phenotype , Pyridones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...