Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Pharmacother ; 175: 116616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723516

ABSTRACT

Fluorescent probes are a powerful tool for imaging amyloid ß (Aß) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aß fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aß- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aß fibrils in vitro (Kd = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aß1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aß plaques. The intermolecular interactions of fluorophores with Aß were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aß1-42 in cerebrospinal fluid or blood.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Fluorescent Dyes , Alzheimer Disease/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Humans , Fluorescent Dyes/chemistry , Peptide Fragments/metabolism , Peptide Fragments/cerebrospinal fluid , Brain/metabolism , Brain/pathology , Brain/diagnostic imaging , Molecular Docking Simulation , Molecular Dynamics Simulation , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Microscopy, Fluorescence/methods
2.
Drug Test Anal ; 11(4): 617-625, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30730110

ABSTRACT

The high frequency of the synthetic cannabinoid receptor agonists (SCRAs) emergence renders this group of new psychoactive compounds particularly demanding in terms of detection, identification, and responding. Without the available reference material, one of the specific problems is differentiation and structure elucidation of constitutional isomers. Herein, we report a simple and efficient flow chart diagram applicable for a rapid nuclear magnetic resonance (NMR) identification and differentiation between azaindoles, 4-, 5-, 6-, and 7-azaindole, which is a common structural motif of synthetic cannabinoids. The flow chart diagram is based on 1 H NMR and 1 H-15 N NMR spectra, and to prove the concept, it has been tested on 5F-MDMB-P7AICA (1). Spectral and analytical data including standard 1D and 2D NMR spectra, gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared-attenuated total reflectant (FTIR-ATR), Raman, melting point, and combustion analysis are provided for compound 1.


Subject(s)
Cannabinoids/analysis , Designer Drugs/analysis , Indoles/analysis , Psychotropic Drugs/analysis , Cannabinoid Receptor Agonists/analysis , Gas Chromatography-Mass Spectrometry , Illicit Drugs/analysis , Isomerism , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL