Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 32(7): 864-870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38760421

ABSTRACT

Carpenter syndrome (CRPTS) is a rare autosomal recessive condition caused by biallelic variants in genes that encode negative regulators of hedgehog signalling (RAB23 [CRPT1] or, more rarely, MEGF8 [CRPT2]), and is characterised by craniosynostosis, polysyndactyly, and other congenital abnormalities. We describe a further six families comprising eight individuals with MEGF8-associated CRPT2, increasing the total number of reported cases to fifteen, and refine the phenotype of CRPT2 compared to CRPT1. The core features of craniosynostosis, polysyndactyly and (in males) cryptorchidism are almost universal in both CRPT1 and CRPT2. However, laterality defects are present in nearly half of those with MEGF8-associated CRPT2, but are rare in RAB23-associated CRPT1. Craniosynostosis in CRPT2 commonly involves a single midline suture in comparison to the multi-suture craniosynostosis characteristic of CRPT1. No patient to date has carried two MEGF8 gene alterations that are both predicted to lead to complete loss-of-function, suggesting that a variable degree of residual MEGF8 activity may be essential for viability and potentially contributing to variable phenotypic severity. These data refine the phenotypic spectrum of CRPT2 in comparison to CRPT1 and more than double the number of likely pathogenic MEGF8 variants in this rare disorder.


Subject(s)
Acrocephalosyndactylia , Phenotype , Humans , Male , Female , Acrocephalosyndactylia/genetics , Acrocephalosyndactylia/pathology , Child , Child, Preschool , Infant , rab GTP-Binding Proteins/genetics , Pedigree , Membrane Proteins/genetics , Adolescent , Mutation
2.
Biol Sex Differ ; 14(1): 63, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770988

ABSTRACT

BACKGROUND: Sex differences have been observed in the development of obesity-related complications in patients, as well as in animal models. Accumulating evidence suggests that sex-dependent regulation of lipid metabolism contributes to sex-specific physiopathology. Lipid accumulation in the renal tissue has been shown to play a major role in the pathogenesis of obesity-induced kidney injury. Unlike in males, the physiopathology of the disease has been poorly described in females, particularly regarding the lipid metabolism adaptation. METHODS: Here, we compared the lipid profile changes in the kidneys of female and male mice fed a high-fat diet (HFD) or low-fat diet (LFD) by lipidomics and correlated them with pathophysiological changes. RESULTS: We showed that HFD-fed female mice were protected from insulin resistance and hepatic steatosis compared to males, despite similar body weight gains. Females were particularly protected from renal dysfunction, oxidative stress, and tubular lipid accumulation. Both HFD-fed male and female mice presented dyslipidemia, but lipidomic analysis highlighted differential renal lipid profiles. While both sexes presented similar neutral lipid accumulation with obesity, only males showed increased levels of ceramides and phospholipids. Remarkably, protection against renal lipotoxicity in females was associated with enhanced renal adiponectin and AMP-activated protein kinase (AMPK) signaling. Circulating adiponectin and its renal receptor levels were significantly lower in obese males, but were maintained in females. This observation correlated with the maintained basal AMPK activity in obese female mice compared to males. CONCLUSIONS: Collectively, our findings suggest that female mice are protected from obesity-induced renal dysfunction and lipotoxicity associated with enhanced adiponectin and AMPK signaling compared to males.


Obesity-related complications can differ between men and women due to sex-specific differences in how fats are handled. Here, we studied the effects of high-fat diet on the kidneys of male and female mice. We found that despite gaining similar weight, obese female mice were better protected against insulin resistance, liver fat accumulation, and kidney damage caused by obesity than males. In particular, female mice were protected against lipid accumulation in the kidneys. We further analyzed the lipid profile in the kidneys of both male and female mice and observed differences in the amount and nature of the accumulated lipids. Male mice had increased levels of specific lipids, which may contribute to their higher risk of kidney damage. In contrast, female mice showed better lipid metabolism adaptation, which helped to protect their kidneys. This study also revealed an association between higher levels of the protein hormone adiponectin and higher activity of the cellular energy master regulator protein AMPK in obese females. These proteins may help prevent obesity-induced kidney damage. In obese males, these protective proteins are reduced and are associated with kidney damage. In conclusion, this study suggests that female mice are naturally shielded from obesity-induced kidney damage and lipid accumulation in the kidneys. Obesity in males is associated with the presence of potentially toxic lipids and dysregulated renal metabolism. Understanding these sex-related differences in obesity-related complications could lead to better management and treatment of kidney problems in both men and women.


Subject(s)
Adiponectin , Kidney Diseases , Animals , Female , Male , Mice , AMP-Activated Protein Kinases/metabolism , Kidney/metabolism , Kidney Diseases/etiology , Lipidomics , Lipids , Obesity/metabolism , Sex Characteristics
3.
Exp Physiol ; 103(1): 125-140, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28944982

ABSTRACT

NEW FINDINGS: What is the central question of this study? The metabolic pathways regulating the effects of obesity on the kidney remain unknown. We sought to determine whether inducible nitric oxide synthase (iNOS) is involved in the underlying mechanisms of high-fat diet-induced kidney disease using a specific iNOS inhibitor, N6-(1-iminoethyl)-l-lysine hydrochloride (L-NIL). What is the main finding and its importance? We did not demonstrate an upregulation of iNOS renal expression after high caloric intake, suggesting that iNOS might not be a crucial player in the development of obesity-induced kidney disease. Although L-NIL treatment clearly ameliorated systemic metabolic parameters, the effect on loss of renal function, impairment of tubular integrity, oxidative stress and inflammation appeared to be more moderate. Central obesity is related to caloric excess, promoting deleterious cellular responses in targeted organs. Nitric oxide (NO) has been determined as a key player in the pathogenesis of metabolic diseases. Here, we investigated the implication of inducible NO synthase (iNOS) in the development of obesity-induced kidney disease. C57Bl/6 male mice were randomized to a low-fat diet (LFD) or a high-fat diet (HFD) and treated with N6-(1-iminoethyl)-l-lysine hydrochloride (L-NIL), a specific iNOS inhibitor, for 16 weeks. Mice fed an HFD exhibited a significant increase in body weight, fasting blood glucose and plasma concentrations of non-esterified fatty acids, triglyceride and insulin. Inhibition of iNOS prevented these changes in mice fed an HFD. Interestingly, the significant increase in albuminuria and mesangial matrix expansion were not ameliorated with L-NIL, whereas a significant decrease in proteinuria, N-acetyl-ß-d-glucosaminidase excretion and renal triglyceride content were found, suggesting that iNOS inhibition is more suitable for tubular function than glomerular function. The urinary concentration of hydrogen peroxide, a stable product of reactive oxygen species production, that was found to be increased in mice fed an HFD, was significantly reduced with L-NIL. Finally, despite a moderate effect of L-NIL on inflammatory processes in the kidney, we demonstrated a positive impact of this treatment on adipocyte hypertrophy and on adipose tissue inflammation. These results suggest that inhibition of iNOS leads to a moderate beneficial effect on kidney function in mice fed an HFD. Further studies are needed for better understanding of the role of iNOS in obesity-induced kidney disease.


Subject(s)
Diet, High-Fat/adverse effects , Kidney Diseases/enzymology , Kidney Diseases/pathology , Kidney/pathology , Kidney/physiology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Animals , Enzyme Inhibitors/pharmacology , Kidney/drug effects , Kidney Diseases/prevention & control , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/physiology
4.
PLoS One ; 12(8): e0183604, 2017.
Article in English | MEDLINE | ID: mdl-28832640

ABSTRACT

Aristolochic Acid (AA) nephropathy (AAN) is a progressive tubulointerstitial nephritis characterized by an early phase of acute kidney injury (AKI) leading to chronic kidney disease (CKD). The reduced nitric oxide (NO) bioavailability reported in AAN might contribute to renal function impairment and progression of the disease. We previously demonstrated that L-arginine (L-Arg) supplementation is protective in AA-induced AKI. Since the severity of AKI may be considered a strong predictor of progression to CKD, the present study aims to assess the potential benefit of L-Arg supplementation during the transition from the acute phase to the chronic phase of AAN. C57BL/6J male mice were randomly subjected to daily i.p. injections of vehicle or AA for 4 days. To determine whether renal AA-induced injuries were linked to reduced NO production, L-Arg was added to drinking water from 7 days before starting i.p. injections, until the end of the protocol. Mice were euthanized 5, 10 and 20 days after vehicle or AA administration. AA-treated mice displayed marked renal injury and reduced NO bioavailability, while histopathological features of AAN were reproduced, including interstitial cell infiltration and tubulointerstitial fibrosis. L-Arg treatment restored renal NO bioavailability and reduced the severity of AA-induced injury, inflammation and fibrosis. We concluded that reduced renal NO bioavailability contributes to the processes underlying AAN. Furthermore, L-Arg shows nephroprotective effects by decreasing the severity of acute-to-chronic transition in experimental AAN and might represent a potential therapeutic tool in the future.


Subject(s)
Aristolochic Acids/toxicity , Kidney Diseases/metabolism , Nitric Oxide/metabolism , Animals , Arginine/administration & dosage , Biological Availability , Inflammation/prevention & control , Kidney Diseases/chemically induced , Mice
5.
Exp Physiol ; 101(1): 193-206, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26442795

ABSTRACT

Aristolochic acid (AA) nephropathy (AAN), a progressive tubulointerstitial injury of toxic origin, is characterized by early and transient acute tubular necrosis. This process has been demonstrated to be associated with reduced nitric oxide (NO) production, which can disrupt the regulation of renal function. In this study, we tested the hypothesis that L-arginine (L-Arg) supplementation could restore renal function and reduce renal injury after AA intoxication. C57BL/6 J male mice were randomly subjected to daily i.p. injection of either sterile saline solution or AA (2.5 mg kg(-1)) for 4 days. To determine whether AA-induced renal injuries were linked to reduced NO production, L-Arg, a substrate for NO synthase, was supplemented (5%) in drinking water. Mice intoxicated with AA exhibited features of rapid-onset acute kidney injury, including polyuria, significantly increased plasma creatinine concentrations, proteinuria and fractional excretion of sodium (P < 0.05), along with severe proximal tubular cell injury and increased NADPH oxidase 2 (Nox2)-derived oxidative stress (P < 0.05). This was associated with a significant reduction in NO bioavailability. L-Arg supplementation in AA-treated mice significantly increased NO bioavailability, which in turn improved renal function (creatininaemia, polyuria, proteinuria, fractional excreted sodium and N-acetyl-ß-D-glucosaminidase enzymuria) and renal structure (tubular necrosis and tubular cell apoptosis). These changes were associated with significant reductions in Nox2 expression and in production of reactive oxygen species and with an increase in antioxidant concentrations. Our results demonstrate that preservation of NO bioavailability leads to renal protection in AA-induced acute kidney injury by reducing oxidative stress and maintaining renal function.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Aristolochic Acids , Nitric Oxide/therapeutic use , Acute Kidney Injury/pathology , Animals , Arginine/pharmacology , Creatinine/blood , Cyclic GMP/urine , Kidney/pathology , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Polyuria/chemically induced , Polyuria/prevention & control , Proteinuria/chemically induced , Proteinuria/prevention & control , Sodium/urine , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...