Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
J Infect Dis ; 223(1): 62-71, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33175145

ABSTRACT

BACKGROUND: At the COVID-19 spring 2020 pandemic peak in Spain, prevalence of SARS-CoV-2 infection in a cohort of 578 randomly selected health care workers (HCWs) from Hospital Clínic de Barcelona was 11.2%. METHODS: A follow-up survey 1 month later (April-May 2020) measured infection by rRT-PCR and IgM, IgA, and IgG to the receptor-binding domain of the spike protein by Luminex. Antibody kinetics, including IgG subclasses, was assessed until month 3. RESULTS: At month 1, the prevalence of infection measured by rRT-PCR and serology was 14.9% (84/565) and seroprevalence 14.5% (82/565). We found 25 (5%) new infections in 501 participants without previous evidence of infection. IgM, IgG, and IgA levels declined in 3 months (antibody decay rates 0.15 [95% CI, .11-.19], 0.66 [95% CI, .54-.82], and 0.12 [95% CI, .09-.16], respectively), and 68.33% of HCWs had seroreverted for IgM, 3.08% for IgG, and 24.29% for IgA. The most frequent subclass responses were IgG1 (highest levels) and IgG2, followed by IgG3, and only IgA1 but no IgA2 was detected. CONCLUSIONS: Continuous and improved surveillance of SARS-CoV-2 infections in HCWs remains critical, particularly in high-risk groups. The observed fast decay of IgA and IgM levels has implications for seroprevalence studies using these isotypes.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Health Personnel , Adult , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , Male , Middle Aged , Seroconversion , Seroepidemiologic Studies , Spain/epidemiology
3.
Nat Commun ; 11(1): 3500, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641730

ABSTRACT

Health care workers (HCW) are a high-risk population to acquire SARS-CoV-2 infection from patients or other fellow HCW. This study aims at estimating the seroprevalence against SARS-CoV-2 in a random sample of HCW from a large hospital in Spain. Of the 578 participants recruited from 28 March to 9 April 2020, 54 (9.3%, 95% CI: 7.1-12.0) were seropositive for IgM and/or IgG and/or IgA against SARS-CoV-2. The cumulative prevalence of SARS-CoV-2 infection (presence of antibodies or past or current positive rRT-PCR) was 11.2% (65/578, 95% CI: 8.8-14.1). Among those with evidence of past or current infection, 40.0% (26/65) had not been previously diagnosed with COVID-19. Here we report a relatively low seroprevalence of antibodies among HCW at the peak of the COVID-19 epidemic in Spain. A large proportion of HCW with past or present infection had not been previously diagnosed with COVID-19, which calls for active periodic rRT-PCR testing in hospital settings.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Health Personnel , Pneumonia, Viral/epidemiology , Adult , Asymptomatic Infections/epidemiology , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Female , Humans , Male , Middle Aged , Occupational Health , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , RNA, Viral/blood , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies , Spain/epidemiology
5.
J Infect Dis ; 212 Suppl 2: S226-33, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26138826

ABSTRACT

Synthesis of the surface glycoprotein GP of Ebola virus (EBOV) is dependent on transcriptional RNA editing, whereas direct expression of the GP gene results in synthesis of nonstructural secreted glycoprotein sGP. In this study, we investigate the role of RNA editing in the pathogenicity of EBOV using a guinea pig model and recombinant guinea pig-adapted EBOV containing mutations at the editing site, allowing expression of surface GP without the need for RNA editing, and also preventing synthesis of sGP. We demonstrate that the elimination of the editing site leads to EBOV attenuation in vivo, explained by lower virus spread caused by the higher virus cytotoxicity and, most likely, by an increased ability of the host defense systems to recognize and eliminate virus-infected cells. We also demonstrate that expression of sGP does not affect pathogenicity of EBOV in guinea pigs. In conclusion, data obtained indicate that downregulation of the level of surface GP expression through a mechanism of GP gene RNA editing plays an important role in the high pathogenicity of EBOV.


Subject(s)
Ebolavirus/genetics , Genes, Viral/genetics , Hemorrhagic Fever, Ebola/virology , RNA Editing/genetics , Viral Envelope Proteins/genetics , Viral Proteins/genetics , Virulence Factors/genetics , Animals , Cell Line , Down-Regulation/genetics , Ebolavirus/pathogenicity , Gene Expression Regulation, Viral/genetics , Guinea Pigs , Membrane Glycoproteins/genetics , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...