Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Sci Rep ; 10(1): 13016, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747668

ABSTRACT

Ischemic heart disease remains the foremost cause of death globally, with survivors at risk for subsequent heart failure. Paradoxically, cell therapies to offset cardiomyocyte loss after ischemic injury improve long-term cardiac function despite a lack of durable engraftment. An evolving consensus, inferred preponderantly from non-human models, is that transplanted cells benefit the heart via early paracrine signals. Here, we tested the impact of paracrine signals on human cardiomyocytes, using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) as the target of mouse and human cardiac mesenchymal stromal cells (cMSC) with progenitor-like features. In co-culture and conditioned medium studies, cMSCs markedly inhibited human cardiomyocyte death. Little or no protection was conferred by mouse tail tip or human skin fibroblasts. Consistent with the results of transcriptomic profiling, functional analyses showed that the cMSC secretome suppressed apoptosis and preserved cardiac mitochondrial transmembrane potential. Protection was independent of exosomes under the conditions tested. In mice, injecting cMSC-conditioned media into the infarct border zone reduced apoptotic cardiomyocytes > 70% locally. Thus, hPSC-CMs provide an auspicious, relevant human platform to investigate extracellular signals for cardiac muscle survival, substantiating human cardioprotection by cMSCs, and suggesting the cMSC secretome or its components as potential cell-free therapeutic products.


Subject(s)
Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Stromal Cells/cytology , Animals , Coculture Techniques , Culture Media, Conditioned , Humans , Mice
2.
Genome Biol ; 20(1): 207, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31610793

ABSTRACT

BACKGROUND: Large palindromes (inverted repeats) make up substantial proportions of mammalian sex chromosomes, often contain genes, and have high rates of structural variation arising via ectopic recombination. As a result, they underlie many genomic disorders. Maintenance of the palindromic structure by gene conversion between the arms has been documented, but over longer time periods, palindromes are remarkably labile. Mechanisms of origin and loss of palindromes have, however, received little attention. RESULTS: Here, we use fiber-FISH, 10x Genomics Linked-Read sequencing, and breakpoint PCR sequencing to characterize the structural variation of the P8 palindrome on the human Y chromosome, which contains two copies of the VCY (Variable Charge Y) gene. We find a deletion of almost an entire arm of the palindrome, leading to death of the palindrome, a size increase by recruitment of adjacent sequence, and other complex changes including the formation of an entire new palindrome nearby. Together, these changes are found in ~ 1% of men, and we can assign likely molecular mechanisms to these mutational events. As a result, healthy men can have 1-4 copies of VCY. CONCLUSIONS: Gross changes, especially duplications, in palindrome structure can be relatively frequent and facilitate the evolution of sex chromosomes in humans, and potentially also in other mammalian species.


Subject(s)
Chromosomes, Human, Y , Inverted Repeat Sequences , Nuclear Proteins/genetics , Base Sequence , DNA Copy Number Variations , Humans
3.
Hum Mol Genet ; 28(16): 2785-2798, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31108506

ABSTRACT

Human RBMY1 genes are located in four variable-sized clusters on the Y chromosome, expressed in male germ cells and possibly associated with sperm motility. We have re-investigated the mutational background and evolutionary history of the RBMY1 copy number distribution in worldwide samples and its relevance to sperm parameters in an Estonian cohort of idiopathic male factor infertility subjects. We estimated approximate RBMY1 copy numbers in 1218 1000 Genomes Project phase 3 males from sequencing read-depth, then chose 14 for valid ation by multicolour fibre-FISH. These fibre-FISH samples provided accurate calibration standards for the entire panel and led to detailed insights into population variation and mutational mechanisms. RBMY1 copy number worldwide ranged from 3 to 13 with a mode of 8. The two larger proximal clusters were the most variable, and additional duplications, deletions and inversions were detected. Placing the copy number estimates onto the published Y-SNP-based phylogeny of the same samples suggested a minimum of 562 mutational changes, translating to a mutation rate of 2.20 × 10-3 (95% CI 1.94 × 10-3 to 2.48 × 10-3) per father-to-son Y-transmission, higher than many short tandem repeat (Y-STRs), and showed no evidence for selection for increased or decreased copy number, but possible copy number stabilizing selection. An analysis of RBMY1 copy numbers among 376 infertility subjects failed to replicate a previously reported association with sperm motility and showed no significant effect on sperm count and concentration, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels or testicular and semen volume. These results provide the first in-depth insights into the structural rearrangements underlying RBMY1 copy number variation across diverse human lineages.


Subject(s)
Chromosomes, Human, Y , DNA Copy Number Variations , Evolution, Molecular , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics , Comparative Genomic Hybridization , Genome, Human , Genomics/methods , Humans , In Situ Hybridization, Fluorescence , Male , Multigene Family , Mutation , Phylogeny , Spermatozoa/metabolism
4.
Front Cardiovasc Med ; 5: 167, 2018.
Article in English | MEDLINE | ID: mdl-30525044

ABSTRACT

The recent development of single cell gene expression technologies, and especially single cell transcriptomics, have revolutionized the way biologists and clinicians investigate organs and organisms, allowing an unprecedented level of resolution to the description of cell demographics in both healthy and diseased states. Single cell transcriptomics provide information on prevalence, heterogeneity, and gene co-expression at the individual cell level. This enables a cell-centric outlook to define intracellular gene regulatory networks and to bridge toward the definition of intercellular pathways otherwise masked in bulk analysis. The technologies have developed at a fast pace producing a multitude of different approaches, with several alternatives to choose from at any step, including single cell isolation and capturing, lysis, RNA reverse transcription and cDNA amplification, library preparation, sequencing, and computational analyses. Here, we provide guidelines for the experimental design of single cell RNA sequencing experiments, exploring the current options for the crucial steps. Furthermore, we provide a complete overview of the typical data analysis workflow, from handling the raw sequencing data to making biological inferences. Significantly, advancements in single cell transcriptomics have already contributed to outstanding exploratory and functional studies of cardiac development and disease models, as summarized in this review. In conclusion, we discuss achievable outcomes of single cell transcriptomics' applications in addressing unanswered questions and influencing future cardiac clinical applications.

5.
Hum Genet ; 137(1): 73-83, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29209947

ABSTRACT

We describe the variation in copy number of a ~ 10 kb region overlapping the long intergenic noncoding RNA (lincRNA) gene, TTTY22, within the IR3 inverted repeat on the short arm of the human Y chromosome, leading to individuals with 0-3 copies of this region in the general population. Variation of this CNV is common, with 266 individuals having 0 copies, 943 (including the reference sequence) having 1, 23 having 2 copies, and two having 3 copies, and was validated by breakpoint PCR, fibre-FISH, and 10× Genomics Chromium linked-read sequencing in subsets of 1234 individuals from the 1000 Genomes Project. Mapping the changes in copy number to the phylogeny of these Y chromosomes previously established by the Project identified at least 20 mutational events, and investigation of flanking paralogous sequence variants showed that the mutations involved flanking sequences in 18 of these, and could extend over > 30 kb of DNA. While either gene conversion or double crossover between misaligned sister chromatids could formally explain the 0-2 copy events, gene conversion is the more likely mechanism, and these events include the longest non-allelic gene conversion reported thus far. Chromosomes with three copies of this CNV have arisen just once in our data set via another mechanism: duplication of 420 kb that places the third copy 230 kb proximal to the existing proximal copy. Our results establish gene conversion as a previously under-appreciated mechanism of generating copy number changes in humans and reveal the exceptionally large size of the conversion events that can occur.


Subject(s)
Chromosomes, Human, Y/genetics , DNA Copy Number Variations , Gene Conversion , Humans , Phylogeny , RNA, Long Noncoding/genetics , Sequence Analysis, DNA
6.
Nat Commun ; 8: 15927, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28643794

ABSTRACT

The genetic features of isolated populations can boost power in complex-trait association studies, and an in-depth understanding of how their genetic variation has been shaped by their demographic history can help leverage these advantageous characteristics. Here, we perform a comprehensive investigation using 3,059 newly generated low-depth whole-genome sequences from eight European isolates and two matched general populations, together with published data from the 1000 Genomes Project and UK10K. Sequencing data give deeper and richer insights into population demography and genetic characteristics than genotype-chip data, distinguishing related populations more effectively and allowing their functional variants to be studied more fully. We demonstrate relaxation of purifying selection in the isolates, leading to enrichment of rare and low-frequency functional variants, using novel statistics, DVxy and SVxy. We also develop an isolation-index (Isx) that predicts the overall level of such key genetic characteristics and can thus help guide population choice in future complex-trait association studies.


Subject(s)
Genome, Human , White People/genetics , Gene Frequency , Genetic Variation , Genetics, Population , Humans , Polymorphism, Single Nucleotide , Whole Genome Sequencing
7.
Hum Genet ; 136(5): 591-603, 2017 05.
Article in English | MEDLINE | ID: mdl-28378101

ABSTRACT

The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.


Subject(s)
Chromosomes, Human, Y/genetics , High-Throughput Nucleotide Sequencing , Chromosome Mapping , DNA Copy Number Variations , Genetic Variation , Genome, Human , Genomics , Humans , Male , Sequence Analysis, DNA
8.
Nat Genet ; 48(6): 593-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27111036

ABSTRACT

We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.


Subject(s)
Chromosomes, Human, Y , Demography , Haplotypes , Humans , Male , Mutation , Phylogeny , Polymorphism, Single Nucleotide
9.
PLoS One ; 10(7): e0134646, 2015.
Article in English | MEDLINE | ID: mdl-26226630

ABSTRACT

Factors affecting the rate and pattern of the mutational process are being identified for human autosomes, but the same relationships for the male specific portion of the Y chromosome (MSY) are not established. We considered 3,390 mutations occurring in 19 sequence bins identified by sequencing 1.5 Mb of the MSY from each of 104 present-day chromosomes. The occurrence of mutations was not proportional to the amount of sequenced bases in each bin, with a 2-fold variation. The regression of the number of mutations per unit sequence against a number of indicators of the genomic features of each bin, revealed the same fundamental patterns as in the autosomes. By considering the sequences of the same region from two precisely dated ancient specimens, we obtained a calibrated region-specific substitution rate of 0.716 × 10-9/site/year. Despite its lack of recombination and other peculiar features, the MSY then resembles the autosomes in displaying a marked regional heterogeneity of the mutation rate. An immediate implication is that a given figure for the substitution rate only makes sense if bound to a specific DNA region. By strictly applying this principle we obtained an unbiased estimate of the antiquity of lineages relevant to the genetic history of the human Y chromosome. In particular, the two deepest nodes of the tree highlight the survival, in Central-Western Africa, of lineages whose coalescence (291 ky, 95% C.I. 253-343) predates the emergence of anatomically modern features in the fossil record.


Subject(s)
Chromosomes, Human, Y , Polymorphism, Single Nucleotide , Humans , Male , Mutation , Phylogeny
10.
Genome Biol Evol ; 7(7): 1940-50, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26108492

ABSTRACT

Haplogroup E, defined by mutation M40, is the most common human Y chromosome clade within Africa. To increase the level of resolution of haplogroup E, we disclosed the phylogenetic relationships among 729 mutations found in 33 haplogroup DE Y-chromosomes sequenced at high coverage in previous studies. Additionally, we dissected the E-M35 subclade by genotyping 62 informative markers in 5,222 samples from 118 worldwide populations. The phylogeny of haplogroup E showed novel features compared with the previous topology, including a new basal dichotomy. Within haplogroup E-M35, we resolved all the previously known polytomies and assigned all the E-M35* chromosomes to five new different clades, all belonging to a newly identified subhaplogroup (E-V1515), which accounts for almost half of the E-M35 chromosomes from the Horn of Africa. Moreover, using a Bayesian phylogeographic analysis and a single nucleotide polymorphism-based approach we localized and dated the origin of this new lineage in the northern part of the Horn, about 12 ka. Time frames, phylogenetic structuring, and sociogeographic distribution of E-V1515 and its subclades are consistent with a multistep demic spread of pastoralism within north-eastern Africa and its subsequent diffusion to subequatorial areas. In addition, our results increase the discriminative power of the E-M35 haplogroup for use in forensic genetics through the identification of new ancestry-informative markers.


Subject(s)
Chromosomes, Human, Y , Haplotypes , Africa , Chromosomes, Human, Y/classification , Evolution, Molecular , Genotyping Techniques , Human Migration , Humans , Male , Mutation , Phylogeny , Phylogeography , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL