Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm (Lond) ; 7(1): 5, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20205821

ABSTRACT

BACKGROUND: The granulocyte colony-stimulating factor receptor (G-CSFR) plays a critical role in maintaining homeostatic levels of circulating neutrophils (PMN). The mechanisms modulating G-CSFR surface expression to prevent chronic neutrophilia are poorly understood. Here, we report that neutrophil elastase (NE) proteolytically cleaves the G-CSFR on human PMN and blocks G-CSFR-mediated granulopoiesis in vitro. METHODS: Human peripheral blood PMN isolated from healthy donors were incubated with NE. Expression of the G-CSFR was analyzed by flow cytometry and western blot analyses. Detection of G-CSFR cleavage products from the culture supernatants was also performed. Human bone marrow mononuclear cells were also cultured in the presence or absence of NE to determine its effects on the proliferation of granulocyte-macrophage colony forming units (CFU-GM). RESULTS: Treatment of PMN with NE induced a time-dependent decrease in G-CSFR expression that correlated with its degradation and the appearance of proteolytic cleavage fragments in conditioned media. Immunoblot analysis confirmed the G-CSFR was cleaved at its amino-terminus. Treatment of progenitor cells with NE prior to culture inhibited the growth of granulocyte-macrophage colony forming units. CONCLUSIONS: These findings indicate that in addition to transcriptional controls and ligand-induced internalization, direct proteolytic cleavage of the G-CSFR by NE also downregulates G-CSFR expression and inhibits G-CSFR-mediated granulopoiesis in vitro. Our results suggest that NE negatively regulates granulopoiesis through a novel negative feedback loop.

2.
Cytokine ; 43(2): 114-23, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18554923

ABSTRACT

The granulocyte colony-stimulating factor receptor (G-CSFR) is a critical regulator of granulopoiesis, but the mechanisms controlling its surface expression are poorly understood. Recent studies using transfected cell lines have suggested the activated G-CSFR is routed to the lysosome and not the proteasome. Here, we examined the role of the ubiquitin/proteasome system in regulating G-CSFR surface expression in both ts20 cells that have a temperature-sensitive E1 ubiquitin-activating enzyme and in primary human neutrophils. We show that the G-CSFR is constitutively ubiquitinated, which increases following ligand binding. In the absence of a functional E1 enzyme, ligand-induced internalization of the receptor is inhibited. Pre-treatment of ts20 transfectants with either chloroquine or MG132 inhibited ligand-induced G-CSFR degradation, suggesting a role for both lysosomes and proteasomes in regulating G-CSFR surface expression in this cell line. In neutrophils, inhibition of the proteasome but not the lysosome was found to inhibit internalization/degradation of the activated G-CSFR. Collectively, these data demonstrate the requirement for a functional ubiquitin/proteasome system in G-CSFR internalization and degradation. Our results suggest a prominent role for the proteasome in physiologic modulation of the G-CSFR, and provide further evidence for the importance of the ubiquitin/proteasome system in the initiation of negative signaling by cytokine receptors.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , Animals , Cell Line , Cricetinae , Ligands , Lysosomes/metabolism , Neutrophils/metabolism , Proteasome Inhibitors , Protein Binding , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Ubiquitination
3.
Semin Cell Dev Biol ; 17(6): 654-66, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17178241

ABSTRACT

Melastatin-related TRPM ion channels have emerged as novel therapeutic targets due to their potential ability to modulate the function and fate of immune cells during inflammation, innate, and adaptive immunity. Four family members, TRPM1, TRPM2, TRPM4 and TRPM7 have a strong presence in the immune system. TRPM channels regulate ion-homeostasis by sensing cellular redox status and cytoplasmic calcium levels. TRPM2 for example, is highly expressed in phagocytes. This channel is activated by intracellular ADP-ribose upon exposure to oxidative stress and induces cell death. Here we will review the functional links between TRPM-mediated ion conductance, chemotaxis, apoptosis, and innate immunity.


Subject(s)
Calcium/physiology , Immunity, Innate , TRPM Cation Channels/physiology , Animals , Humans , Oxidation-Reduction
4.
Blood ; 105(9): 3397-404, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15657182

ABSTRACT

Mutations in the ELA2 gene encoding neutrophil elastase (NE) are present in most patients with severe congenital neutropenia (SCN). However, the mechanisms by which these mutations cause neutropenia remain unknown. To investigate the effects of mutant NE expression on granulopoiesis, we used the HL-60 promyelocytic cell line retrovirally transduced with the G185R NE mutant that is associated with a severe SCN phenotype. We show that the mutant enzyme accelerates apoptosis of differentiating but not of proliferating cells. Using metabolic labeling, confocal immunofluorescence microscopy, and immunoblot analysis of subcellular fractions, we also demonstrate that the G185R mutant is abnormally processed and localizes predominantly to the nuclear and plasma membranes rather than to the cytoplasmic compartment observed with the wild-type (WT) enzyme. Expression of the G185R mutant appeared to alter the subcellular distribution and expression of adaptor protein 3 (AP3), which traffics proteins from the trans-Golgi apparatus to the endosome. These observations provide further insight into potential mechanisms by which NE mutations cause neutropenia and suggest that abnormal protein trafficking and accelerated apoptosis of differentiating myeloid cells contribute to the severe SCN phenotype resulting from the G185R mutation.


Subject(s)
Apoptosis/genetics , Granulocyte Precursor Cells/cytology , Leukocyte Elastase/genetics , Mutation, Missense , Neutropenia/genetics , Adaptor Protein Complex 3 , Cell Compartmentation , Cell Differentiation , Cell Proliferation , HL-60 Cells , Humans , Neutropenia/congenital , Neutropenia/etiology , Protein Transport/genetics , Transduction, Genetic/methods
5.
Blood ; 105(2): 584-91, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15353486

ABSTRACT

Severe congenital neutropenia (SCN) is a rare disease diagnosed at or soon after birth, characterized by a myeloid maturation arrest in the bone marrow, ineffective neutrophil production, and recurrent infections. Most patients respond to treatment with granulocyte colony-stimulating factor (G-CSF), and the majority harbor mutations in the neutrophil elastase gene. In the subset of patients with SCN transforming to acute myeloid leukemia (AML), mutations that truncate the cytoplasmic tail of the G-CSF receptor (G-CSFR) have been detected. Here, we report a novel mutation in the extracellular portion of the G-CSFR within the WSXWS motif in a patient with SCN without AML who was refractory to G-CSF treatment. The mutation affected a single allele and introduced a premature stop codon that deletes the distal extracellular region and the entire transmembrane and cytoplasmic portions of the G-CSFR. Expression of the mutant receptor in either myeloid or lymphoid cells was shown to alter subcellular trafficking of the wild-type (WT) G-CSFR by constitutively heterodimerizing with it. WT/mutant G-CSFR heterodimers appeared to be retained in the endoplasmic reticulum and/or Golgi and accumulate intracellularly. These findings together with 2 previous case reports of extracellular mutations in the G-CSFR in patients with SCN unresponsive to G-CSF suggest a common mechanism underlying G-CSF refractoriness.


Subject(s)
Granulocyte Colony-Stimulating Factor/therapeutic use , Neutropenia/drug therapy , Neutropenia/genetics , Neutrophils/drug effects , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Adult , Cells, Cultured , Dimerization , Drug Resistance , Female , Gene Expression , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Infant, Newborn , Ligands , Male , Neutropenia/congenital , Neutrophils/cytology , Neutrophils/metabolism , Parents , Point Mutation , Receptors, Granulocyte Colony-Stimulating Factor/chemistry , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
6.
Am J Hematol ; 74(3): 149-55, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14587040

ABSTRACT

Neutrophil elastase (NE) is a serine protease stored in the primary granules of neutrophils that proteolytically cleaves multiple cytokines and cell surface proteins on release from activated neutrophils. Recent reports of mutations in the gene encoding this enzyme in some patients with neutropenic syndromes prompted us to investigate whether granulocyte colony-stimulating factor (G-CSF) and its receptor (G-CSFR) are also substrates for NE. To further address this, we examined the effect of NE on G-CSF and the G-CSFR both in solution and on intact cells. Incubation of recombinant G-CSF or a G-CSFR form corresponding to its extracellular domain with purified NE resulted in rapid proteolytic cleavage of both proteins. Addition of NE to tissue culture medium or pretreatment of G-CSF with NE before its addition to media suppressed the growth of G-CSF-responsive cells. NE also cleaved the G-CSFR on the surface of intact cells resulting in a time-dependent reduction in cell surface expression of the G-CSFR. Notably, decreased G-CSFR surface expression resulting from treatment of cells with NE was also associated with a reduction in cell viability and proliferation in response to G-CSF. These results are the first to demonstrate that G-CSF and G-CSFR are proteolytically cleaved by NE and that NE-induced degradation of these proteins correlates with a reduction in the biologic activity of the cytokine and a decrease in the signaling function of the receptor because of decreased G-CSFR surface expression. These findings provide additional insights into mechanisms by which G-CSF/G-CSFR interactions may be modulated.


Subject(s)
Granulocyte Colony-Stimulating Factor/metabolism , Leukocyte Elastase/metabolism , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , Animals , Cell Division/drug effects , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Down-Regulation , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Kinetics , Leukocyte Elastase/pharmacology , Mice , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL