Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Neurosci Biobehav Rev ; 153: 105362, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37595650

ABSTRACT

Over the past 20 years, clinical and preclinical studies point to the anterior cingulate cortex (ACC) as a site of interest for several neurological and psychiatric conditions. The ACC plays a critical role in emotion, autonomic regulation, pain processing, attention, memory and decision making. An increasing number of studies have demonstrated the involvement of the ACC in the emotional component of pain and its comorbidity with emotional disorders such as anxiety and depression. Thanks to the development of animal models combined with state-of-the-art technologies, we now have a better mechanistic understanding of the functions of the ACC. Hence, the primary aim of this review is to compile the most recent preclinical studies on the role of ACC in the emotional component and consequences of chronic pain. Herein, we thus thoroughly describe the pain-induced electrophysiological, molecular and anatomical alterations in the ACC and in its related circuits. Finally, we discuss the next steps that are needed to strengthen our understanding of the involvement of the ACC in emotional and pain processing.

2.
Biol Psychiatry ; 94(11): 842-851, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37285896

ABSTRACT

BACKGROUND: Mu opioid receptors (MORs) are key for reward processing, mostly studied in dopaminergic pathways. MORs are also expressed in the dorsal raphe nucleus (DRN), which is central for the modulation of reward and mood, but MOR function in the DRN remains underexplored. Here, we investigated whether MOR-expressing neurons of the DRN (DRN-MOR neurons) participate in reward and emotional responses. METHODS: We characterized DRN-MOR neurons anatomically using immunohistochemistry and functionally using fiber photometry in responses to morphine and rewarding/aversive stimuli. We tested the effect of opioid uncaging on the DRN on place conditioning. We examined the effect of DRN-MOR neuron optostimulation on positive reinforcement and mood-related behaviors. We mapped their projections and selected DRN-MOR neurons projecting to the lateral hypothalamus for a similar optogenetic experimentation. RESULTS: DRN-MOR neurons form a heterogeneous neuronal population essentially composed of GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons. Calcium activity of DRN-MOR neurons was inhibited by rewarding stimuli and morphine. Local photo-uncaging of oxymorphone in the DRN produced conditioned place preference. DRN-MOR neuron optostimulation triggered real-time place preference and was self-administered, promoted social preference, and reduced anxiety and passive coping. Finally, specific optostimulation of DRN-MOR neurons projecting to the lateral hypothalamus recapitulated the reinforcing effects of total DRN-MOR neuron stimulation. CONCLUSIONS: Our data show that DRN-MOR neurons respond to rewarding stimuli and that their optoactivation has reinforcing effects and promotes positive emotional responses, an activity which is partially mediated by their projections to the lateral hypothalamus. Our study also suggests a complex regulation of DRN activity by MOR opioids, involving mixed inhibition/activation mechanisms that fine-tune DRN function.


Subject(s)
Dorsal Raphe Nucleus , Receptors, Opioid, mu , Neurons/physiology , Morphine/pharmacology , Analgesics, Opioid , Reward
3.
Neuroscience ; 514: 56-66, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36716915

ABSTRACT

The lateral habenula (LHb) is an epithalamic brain region viewed as a converging hub, integrating information from a large connectome and then projecting to few critical midbrain monoaminergic systems. Numerous studies have explored the roles of the LHb, notably in aversion and avoidance. An important recurring finding when manipulating the LHb is the induction of anxiety-related behaviours. However, its exact role in such behaviours remains poorly understood. In the present study, we used two pharmacological approaches altering LHb activity, intra-LHb infusion of either the GABA-A receptor agonist, Muscimol, or the glutamatergic AMPA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and exposed rats to three consecutive open field (OF) sessions. We found that both pharmacological treatments prevented rats to explore the centre of the OF, considered as the most anxiogenic part of the apparatus, across the three OF sessions. In addition, during the first, but not the two consecutive sessions, both treatments prevented a thorough exploration of the OF. Altogether, these results confirm the crucial role played by the LHb in anxiety-related behaviours and further suggest its implication in the exploration of new anxiogenic environments.


Subject(s)
Habenula , Rats , Animals , Muscimol/pharmacology , GABA-A Receptor Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology
4.
Front Syst Neurosci ; 16: 826475, 2022.
Article in English | MEDLINE | ID: mdl-35308564

ABSTRACT

In this Perspective review, we highlight some of the less explored aspects of lateral habenula (LHb) function in contextual memory, sleep, and behavioral flexibility. We provide evidence that LHb is well-situated to integrate different internal state and multimodal sensory information from memory-, stress-, motivational-, and reward-related circuits essential for both survival and decision making. We further discuss the impact of early life stress (ELS) on LHb function as an example of stress-induced hyperactivity and dysregulation of neuromodulatory systems within the LHb that promote anhedonia and motivational deficits following ELS. We acknowledge that recent technological advancements in manipulation and recording of neural circuits in simplified and well-controlled behavioral paradigms have been invaluable in our understanding of the critical role of LHb in motivation and emotional regulation as well as the involvement of LHb dysfunction in stress-induced psychopathology. However, we also argue that the use of ethologically-relevant behaviors with consideration of complex aspects of decision-making is warranted for future studies of LHb contributions in a wide range of psychiatric illnesses. We conclude this Perspective with some of the outstanding issues for the field to consider where a multi-systems approach is needed to investigate the complex nature of LHb circuitry interactions with environmental stimuli that predisposes psychiatric disorders.

5.
Sci Adv ; 7(45): eabj2225, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739312

ABSTRACT

How neurons in the medial prefrontal cortex broadcast stress-relevant information to subcortical brain sites to regulate cocaine relapse remains unclear. The lateral habenula (LHb) serves as a "hub" to filter and propagate stress- and aversion-relevant information in the brain. Here, we show that chemogenetic inhibition of cortical inputs to LHb attenuates relapse-like reinstatement of extinguished cocaine seeking in mice. Using an RNA sequencing­based brain mapping procedure with single-cell resolution, we identify networks of cortical neurons that project to LHb and then preferentially innervate different downstream brain sites, including the ventral tegmental area, median raphe nucleus, and locus coeruleus (LC). By using an intersectional chemogenetics approach, we show that inhibition of cortico-habenular neurons that project to LC, but not to other sites, blocks reinstatement of cocaine seeking. These findings highlight the remarkable complexity of descending cortical inputs to the habenula and identify a cortico-habenulo-hindbrain circuit that regulates cocaine seeking.

6.
Brain Struct Funct ; 225(7): 2029-2044, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32642914

ABSTRACT

Increasing evidence points to the engagement of the lateral habenula (LHb) in the selection of appropriate behavioral responses in aversive situations. However, very few data have been gathered with respect to its role in fear memory formation, especially in learning paradigms in which brain areas involved in cognitive processes like the hippocampus (HPC) and the medial prefrontal cortex (mPFC) are required. A paradigm of this sort is trace fear conditioning, in which an aversive event is preceded by a discrete stimulus, generally a tone, but without the close temporal contiguity allowing for their association based on amygdala-dependent information processing. In a first experiment, we analyzed cellular activations (c-Fos expression) induced by trace fear conditioning in subregions of the habenular complex, HPC, mPFC and amygdala using a factorial analysis to unravel functional networks through correlational analysis of data. This analysis suggested that distinct LHb subregions engaged in different aspects of conditioning, e.g. associative processes and onset of fear responses. In a second experiment, we performed chemogenetic LHb inactivation during the conditioning phase of the trace fear conditioning paradigm and subsequently assessed contextual and tone fear memories. Whereas LHb inactivation did not modify rat's behavior during conditioning, it induced contextual memory deficits and enhanced fear to the tone. These results demonstrate the involvement of the LHb in fear memory. They further suggest that the LHb is engaged in learning about threatening environments through the selection of relevant information predictive of a danger.


Subject(s)
Conditioning, Classical/physiology , Fear/physiology , Habenula/metabolism , Memory/physiology , Proto-Oncogene Proteins c-fos/metabolism , Amygdala/metabolism , Animals , Freezing Reaction, Cataleptic/physiology , Male , Motor Activity/physiology , Prefrontal Cortex/metabolism , Rats, Long-Evans
7.
Neurosci Biobehav Rev ; 106: 102-111, 2019 11.
Article in English | MEDLINE | ID: mdl-29936111

ABSTRACT

Addiction is now recognized as a neurobiological and cognitive brain disorder and is generally viewed as a switch from recreational or voluntary to compulsive substance use despite aversive consequences. The habenula, composed of medial (MHb) and lateral (LHb) domains, has been implicated in regulating behavioral flexibility and anxiety-related behaviors and is considered a core component of the brain "anti-reward" system. These functions position the habenula to influence voluntary behaviors. Consistent with this view, emerging evidence points to alterations in habenula activity as important factors to contributing the loss of control over the use of drugs of abuse and the emergence of compulsive drug seeking behaviors. In this review, we will discuss the general functions of the MHb and LHb and describe how these functional properties allow this brain region to promote or suppress volitional behaviors. Then, we highlight mechanisms by which drugs of abuse may alter habenular activity, precipitating the emergence of addiction-relevant behavioral abnormalities.


Subject(s)
Avoidance Learning , Compulsive Behavior , Habenula , Motivation , Reward , Self-Control , Substance-Related Disorders , Animals , Avoidance Learning/physiology , Compulsive Behavior/metabolism , Compulsive Behavior/physiopathology , Habenula/metabolism , Habenula/physiopathology , Humans , Motivation/physiology , Substance-Related Disorders/metabolism , Substance-Related Disorders/physiopathology
8.
Curr Biol ; 28(14): R791-R792, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30040940

ABSTRACT

The dorsal hypothalamic area regulates increases in body temperature in response to stress, but precise mechanisms are unclear. A new study suggests that glutamatergic neurons in this brain area regulate this action and, surprisingly, may also be involved in blushing.


Subject(s)
Hyperthermia, Induced , Neurosciences , Blushing , Brain , Thermogenesis
9.
J Neurosci ; 38(12): 3102-3115, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29463643

ABSTRACT

Pain associates both sensory and emotional aversive components, and often leads to anxiety and depression when it becomes chronic. Here, we characterized, in a mouse model, the long-term development of these sensory and aversive components as well as anxiodepressive-like consequences of neuropathic pain and determined their electrophysiological impact on the anterior cingulate cortex (ACC, cortical areas 24a/24b). We show that these symptoms of neuropathic pain evolve and recover in different time courses following nerve injury in male mice. In vivo electrophysiological recordings evidence an increased firing rate and bursting activity within the ACC when anxiodepressive-like consequences developed, and this hyperactivity persists beyond the period of mechanical hypersensitivity. Whole-cell patch-clamp recordings also support ACC hyperactivity, as shown by increased excitatory postsynaptic transmission and contribution of NMDA receptors. Optogenetic inhibition of the ACC hyperactivity was sufficient to alleviate the aversive and anxiodepressive-like consequences of neuropathic pain, indicating that these consequences are underpinned by ACC hyperactivity.SIGNIFICANCE STATEMENT Chronic pain is frequently comorbid with mood disorders, such as anxiety and depression. It has been shown that it is possible to model this comorbidity in animal models by taking into consideration the time factor. In this study, we aimed at determining the dynamic of different components and consequences of chronic pain, and correlated them with electrophysiological alterations. By combining electrophysiological, optogenetic, and behavioral analyses in a mouse model of neuropathic pain, we show that the mechanical hypersensitivity, ongoing pain, anxiodepressive consequences, and their recoveries do not necessarily exhibit temporal synchrony during chronic pain processing, and that the hyperactivity of the anterior cingulate cortex is essential for driving the emotional impact of neuropathic pain.


Subject(s)
Chronic Pain/physiopathology , Chronic Pain/psychology , Gyrus Cinguli/physiopathology , Neuralgia/physiopathology , Neuralgia/psychology , Animals , Anxiety/etiology , Anxiety/physiopathology , Depression/etiology , Depression/physiopathology , Male , Mice , Mice, Inbred C57BL
10.
Behav Brain Res ; 341: 63-70, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29248667

ABSTRACT

The lateral habenula (LHb) is involved in emotional and cognitive behaviors. Recently, we have shown in rats that blockade of excitatory inputs to the LHb not only induced deficits of memory retrieval in the water maze, but also altered swim strategies (i.e., induced excessive thigmotaxis). The latter observation, although consistent with the occurrence of memory deficits, could also possibly be the consequence of an excessive level of stress, further suggesting a role for the LHb in the stress response in our behavioral paradigm. To test this hypothesis we performed in rats intra-LHb infusion of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 267 ng/side in 0.3 µL), or vehicle, and assessed the responsiveness of the hypothalamo-pituitary adrenal (HPA) axis to environmental stressful or non-stressful situations. We have measured plasma corticosterone (CORT) concentrations at different time points before and following intra-LHb infusion of CNQX - or of the same volume of vehicle - in three conditions: during the probe test of a water maze experiment; in an anxiety test, the elevated plus maze; and in a home cage condition. Whereas there were no differences in the home cage condition and in the elevated plus maze, in the water maze experiment we observed that CNQX-treated rats presented, along with memory deficits, a higher level of blood CORT than vehicle-treated rats. These results suggest that perturbations of the modulation of the HPA axis are consecutive to the alteration of LHb function, whether it is the result of a defective direct control of the LHb over the HPA axis, or the consequence of memory deficits.


Subject(s)
Habenula/physiopathology , Hypothalamo-Hypophyseal System/physiopathology , Maze Learning/physiology , Pituitary-Adrenal System/physiopathology , Spatial Memory/physiology , Stress, Psychological/physiopathology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Cognition/drug effects , Cognition/physiology , Corticosterone/blood , Excitatory Amino Acid Antagonists/pharmacology , Habenula/drug effects , Male , Maze Learning/drug effects , Rats, Long-Evans , Spatial Memory/drug effects
12.
Pharmacol Biochem Behav ; 162: 69-78, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28709783

ABSTRACT

Our memory abilities, whether they involve short-term working memory or long-term episodic or procedural memories, are essential for our well-being, our capacity to adapt to constraints of our environment and survival. Therefore, several key brain regions and neurotransmitter systems are engaged in the processing of sensory information to either maintain such information in working memory so that it will quickly be used, and/or participate in the elaboration and storage of enduring traces useful for longer periods of time. Animal research has recently attracted attention on the lateral habenula which, as shown in rodents and non-human primates, seems to process information stemming in the main regions involved in memory processing, e.g., the medial prefrontal cortex, the hippocampus, the amygdala, the septal region, the basal ganglia, and participates in the control of key memory-related neurotransmitters systems, i.e., dopamine, serotonin, acetylcholine. Recently, the lateral habenula has been involved in working and spatial reference memories, in rodents, likely by participating in online processing of contextual information. In addition, several behavioral studies strongly suggest that it is also involved in the processing of the emotional valance of incoming information in order to adapt to particularly stressful situations. Therefore, the lateral habenula appears like a key region at the interface between cognition and emotion to participate in the selection of appropriate behaviors.


Subject(s)
Habenula/physiology , Memory, Long-Term/physiology , Memory, Short-Term/physiology , Mental Processes/physiology , Nerve Net/physiology , Animals , Humans , Stress, Psychological/metabolism , Stress, Psychological/psychology
13.
Cereb Cortex ; 27(12): 5485-5495, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28334072

ABSTRACT

Working memory is a cognitive ability allowing the temporary storage of information to solve problems or adjust behavior. While working memory is known to mainly depend on the medial prefrontal cortex (mPFC), very few is known about how cortical information are relayed subcortically. By its connectivity, the lateral habenula (lHb) might act as a subcortical relay for cortical information. Indeed, the lHb receives inputs from several mPFC subregions, and recent findings suggest a role for the lHb in online processing of spatial information, a fundamental aspect of working memory. In rats, in a delayed non-matching to position paradigm, using focal microinjections of the GABAA agonist muscimol we showed that inactivation of the lHb (16 ng in 0.2 µL per side), as well as disconnection between the prelimbic region of the mPFC (mPFC/PrL, 32 ng in 0.4 µL in one hemisphere) and the lHb (16 ng in 0.2 µL in the lHb in the contralateral hemisphere) impaired working memory. The deficits were unlikely to result from motivational or motor deficits as muscimol did not affect reward collection or cue responding latencies, and did not increase the number of omissions. These results show for the first time the implication of the lHb in mPFC-dependent memory processes, likely as a relay of mPFC/PrL information. They also open new perspectives in the understanding of the top-down processing of high-level cognitive functions.


Subject(s)
Habenula/physiology , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Animals , GABA-A Receptor Agonists/pharmacology , Habenula/drug effects , Male , Memory, Short-Term/drug effects , Microinjections , Motivation/drug effects , Motivation/physiology , Muscimol/pharmacology , Neural Pathways/drug effects , Neural Pathways/physiology , Neuropsychological Tests , Prefrontal Cortex/drug effects , Rats, Long-Evans , Reward
14.
Neuropsychopharmacology ; 40(12): 2843-51, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25971591

ABSTRACT

The lateral habenula (LHb) is viewed as a relay between the limbic system, the basal ganglia (BG), and monoaminergic neurons of the midbrain. If a prominent role has been evidenced in BG-mediated functions such as value-based decision-making, very little is known about the involvement of the LHb in limbic functions such as memory processing. In the present study, we used two pharmacological approaches-LHb reversible inactivation with intra-LHb infusion of muscimol, an agonist of the GABA-A receptor, or blockade of excitatory inputs with intra-LHb infusion of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an antagonist of the glutamatergic AMPA receptor-to investigate the involvement of the LHb in encoding, consolidation, and retrieval of spatial memory in the water maze (WM) in rats. We found that intra-LHb infusion of muscimol or CNQX prevented encoding and retrieval, but not consolidation of spatial information. In addition, muscimol but not CNQX induced impairments during a cued version of the WM task, and marked anxiety in the elevated plus maze. These results confirm the involvement of the LHb in higher cognitive functions. They further suggest a dichotomy between the role of glutamatergic and other inputs to the LHb in hippocampus-dependent memory processing, as well as in emotional aspects of goal-directed behaviors.


Subject(s)
Habenula/physiology , Spatial Memory/physiology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Analysis of Variance , Animals , Cues , Drug Administration Schedule , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Agonists/pharmacology , Habenula/drug effects , Male , Maze Learning/drug effects , Motor Activity/drug effects , Muscimol/pharmacology , Psychomotor Performance/drug effects , Rats , Rats, Long-Evans , Retention, Psychology/drug effects , Spatial Memory/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...