Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372993

ABSTRACT

The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is higher in men than in women of reproductive age, and postmenopausal women are especially susceptible to developing the disease. AIM: we evaluated if female apolipoprotein E (ApoE) KO mice were protected against Western-diet (WD)-induced NASH. METHODS: Female ovariectomized (OVX) ApoE KO mice or sham-operated (SHAM) mice were fed either a WD or a regular chow (RC) for 7 weeks. Additionally, OVX mice fed a WD were treated with either estradiol (OVX + E2) or vehicle (OVX). RESULTS: Whole-body fat, plasma glucose, and plasma insulin were increased and associated with increased glucose intolerance in OVX mice fed a WD (OVX + WD). Plasma and hepatic triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) hepatic enzymes were also increased in the plasma of OVX + WD group, which was associated with hepatic fibrosis and inflammation. Estradiol replacement in OVX mice reduced body weight, body fat, glycemia, and plasma insulin associated with reduced glucose intolerance. Treatment also reduced hepatic triglycerides, ALT, AST, hepatic fibrosis, and inflammation in OVX mice. CONCLUSIONS: These data support the hypothesis that estradiol protects OVX ApoE KO mice from NASH and glucose intolerance.


Subject(s)
Glucose Intolerance , Insulins , Non-alcoholic Fatty Liver Disease , Animals , Female , Mice , Apolipoproteins E/genetics , Diet , Estradiol/pharmacology , Glucose , Glucose Intolerance/etiology , Glucose Intolerance/pathology , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Triglycerides
2.
Curr Issues Mol Biol ; 44(10): 4692-4703, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36286035

ABSTRACT

One of the consequences of the Western lifestyle and high-fat diet is non-alcoholic fatty liver disease (NAFLD) and its aggressive form, non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is rapidly becoming the leading cause of end-stage liver disease or liver transplantation. Currently, rodent NASH models lack significant aspects of the full NASH spectrum, representing a major problem for NASH research. Therefore, this work aimed to characterize a fast rodent model with all characteristic features of NASH. Eight-week-old male ApoE KO mice were fed with Western diet (WD), high fatty diet (HFD) or normal chow (Chow) for 7 weeks. Whole-body fat was increased by ~2 times in WD mice and HFD mice and was associated with increased glucose intolerance, hepatic triglycerides, and plasma ALT and plasma AST compared with Chow mice. WD mice also showed increased galectin-3 expression compared with Chow or HFD mice and increased plasma cholesterol compared with Chow mice. WD and HFD displayed increased hepatic fibrosis and increased F4/80 expression. WD mice also displayed increased levels of plasma MCP-1. Hepatic inflammatory markers were evaluated, and WD mice showed increased levels of TNF-α, MCP-1, IL-6 and IFN-γ. Taken together, these data demonstrated that the ApoE KO mouse fed with WD is a great model for NASH research, once it presents the fundamental parameters of the disease, including hepatic steatosis, fibrosis, inflammation, and metabolic syndrome.

3.
Biomed Pharmacother ; 155: 113660, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36095960

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.


Subject(s)
Insulin Resistance , Kombucha Tea , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Citrate (si)-Synthase/metabolism , Farnesol/metabolism , Farnesol/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Liver , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Insulin/metabolism , Glucose/metabolism , Bile Acids and Salts/metabolism , Carbohydrates/pharmacology , Serine/metabolism , Serine/pharmacology , Phosphofructokinase-1/metabolism , GTP-Binding Proteins/metabolism , Collagen/metabolism , Mice, Inbred C57BL , Diet, High-Fat
SELECTION OF CITATIONS
SEARCH DETAIL
...