Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Foods ; 12(11)2023 May 24.
Article En | MEDLINE | ID: mdl-37297350

In the present research, we investigated changes in the gut metabolome that occurred in response to the administration of the Laticaseibacillus rhamnosus strain GG (LGG). The probiotics were added to the ascending colon region of mature microbial communities established in a human intestinal microbial ecosystem simulator. Shotgun metagenomic sequencing and metabolome analysis suggested that the changes in microbial community composition corresponded with changes to metabolic output, and we can infer linkages between some metabolites and microorganisms. The in vitro method permits a spatially-resolved view of metabolic transformations under human physiological conditions. By this method, we found that tryptophan and tyrosine were mainly produced in the ascending colon region, while their derivatives were detected in the transverse and descending regions, revealing sequential amino acid metabolic pathways along with the colonic tract. The addition of LGG appeared to promote the production of indole propionic acid, which is positively associated with human health. Furthermore, the microbial community responsible for the production of indole propionic acid may be broader than is currently known.

2.
J Cyst Fibros ; 22(4): 636-643, 2023 07.
Article En | MEDLINE | ID: mdl-36822979

BACKGROUND: The respiratory tract fungal microbiome in cystic fibrosis (CF) has been understudied despite increasing recognition of fungal pathogens in CF lung disease. We sought to better understand the fungal communities in adults with CF, and to define relationships between fungal profiles and clinical characteristics. METHODS: We enrolled 66 adults with CF and collected expectorated sputum, spirometry, Cystic Fibrosis Questionnaire-revised, and clinical data. Fungi were molecularly profiled by sequencing of the internal transcribed spacer (ITS) region. Total fungal abundance was measured by quantitative PCR. Relative abundance and qPCR-corrected abundances were determined. Selective fungus culture identified cultivable fungi. Alpha diversity and beta diversity were measured and relationships with clinical parameters were interrogated. RESULTS: Median age was 29 years and median FEV1 percent predicted 58%. Members of the Candida genus were the most frequent dominant taxa in CF sputum. Apiotrichum, Trichosporon, Saccharomyces cerevisiae, and Scedosporium were present in high relative abundance in few samples; whereas, Aspergillus species were detected at low levels. Higher FEV1% predicted and CFTR modulator use were associated with greater alpha-diversity. Chronic azithromycin use was associated with lower alpha-diversity. Patients with acute pulmonary had distinct fungal community composition compared to clinically stable subjects. Differing yeast species were mainly responsible for the community differences. CONCLUSION: The respiratory tract fungal microbiome in adults with CF is associated with lung function, pulmonary exacerbation status, macrolide use, and CFTR modulator use. Future work to better understand fungal diversity in the CF airway and its impact on lung health is necessary.


Cystic Fibrosis , Mycobiome , Humans , Adult , Fungi , Cystic Fibrosis Transmembrane Conductance Regulator , Respiratory System/microbiology , Sputum/microbiology
3.
Gut Microbes ; 14(1): 2154091, 2022.
Article En | MEDLINE | ID: mdl-36474348

Antibiotics are administered near-universally to very low birth weight (VLBW) infants after birth for suspected early-onset sepsis (EOS). We previously identified a phenotypic group of VLBW infants, referred to as low-risk for EOS (LRE), whose risk of EOS is low enough to avoid routine antibiotic initiation. In this cohort study, we compared 18 such infants with 30 infants categorized as non-LRE to determine if the lower risk of pathogen transmission at birth is accompanied by differences in microbiome acquisition and development. We did shotgun metagenomic sequencing of 361 fecal samples obtained serially. LRE infants had a higher human-to-bacterial DNA ratio than non-LRE infants in fecal samples on days 1-3 after birth, confirming lower bacterial acquisition among LRE infants. The microbial diversity and composition in samples from days 4-7 differed between the groups with a predominance of Staphylococcus epidermidis in LRE infants and Enterobacteriaceae sp. in non-LRE infants. Compositional differences were congruent with the distribution of virulence factors and antibiotic resistant genes. After the first week, the overall composition was similar, but changes in relative abundance for several taxa with increasing age differed between groups. Of the nine late-onset bacteremia episodes, eight occurred in non-LRE infants. Species isolated from the blood culture was detected in the pre-antibiotic fecal samples of the infant for all episodes, though these species were also found in infants without bacteremia. In conclusion, LRE infants present a distinct pattern of microbiome development that is aligned with their low risk for EOS. Further investigation to determine the impact of these differences on later outcomes such as late-onset bacteremia is warranted.


Gastrointestinal Microbiome , Infant, Premature , Infant, Newborn , Humans , Cohort Studies , Metagenomics , Anti-Bacterial Agents/pharmacology
4.
Foods ; 11(23)2022 Dec 01.
Article En | MEDLINE | ID: mdl-36496685

Pectins are plant polysaccharides consumed as part of a diet containing fruits and vegetables. Inside the gastrointestinal tract, pectin cannot be metabolized by the mammalian cells but is fermented by the gut microbiota in the colon with the subsequent release of end products including short-chain fatty acids (SCFA). The prebiotic effects of pectin have been previously evaluated but reports are inconsistent, most likely due to differences in the pectin chemical structure which can vary by molecular weight (MW) and degree of esterification (DE). Here, the effects of two different MW lemon pectins with varying DEs on the gut microbiota of two donors were evaluated in vitro. The results demonstrated that low MW, high DE lemon pectin (LMW-HDE) altered community structure in a donor-dependent manner, whereas high MW, low DE lemon pectin (HMW-LDE) increased taxa within Lachnospiraceae in both donors. LMW-HDE and HMW-LDE lemon pectins both increased total SCFAs (1.49- and 1.46-fold, respectively) and increased acetic acid by 1.64-fold. Additionally, LMW-HDE lemon pectin led to an average 1.41-fold increase in butanoic acid. Together, these data provide valuable information linking chemical structure of pectin to its effect on the gut microbiota structure and function, which is important to understanding its prebiotic potential.

5.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article En | MEDLINE | ID: mdl-36361763

The consumption of probiotics is widely encouraged due to reports of their positive effects on human health. In particular, Lacticaseibacillus rhamnosus strain GG (LGG) is an approved probiotic that has been reported to improve health outcomes, especially for gastrointestinal disorders. However, how LGG cooperates with the gut microbiome has not been fully explored. To understand the interaction between LGG and its ability to survive and grow within the gut microbiome, this study introduced LGG into established microbial communities using an in vitro model of the colon. LGG was inoculated into the simulated ascending colon and its persistence in, and transit through the subsequent transverse and descending colon regions was monitored over two weeks. The impact of LGG on the existing bacterial communities was investigated using 16S rRNA sequencing and short-chain fatty acid analysis. LGG was able to engraft and proliferate in the ascending region for at least 10 days but was diminished in the transverse and descending colon regions with little effect on short-chain fatty acid abundance. These data suggest that the health benefits of the probiotic LGG rely on its ability to transiently engraft and modulate the host microbial community.


Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Probiotics , Humans , RNA, Ribosomal, 16S/genetics , Fatty Acids, Volatile
6.
FEMS Microbiol Ecol ; 98(5)2022 05 14.
Article En | MEDLINE | ID: mdl-35383853

Environmental pH is a critical parameter for maintenance of the gut microbiota. Here, the impact of pH on the gut microbiota luminal and mucosal community structure and short chain fatty acid (SCFA) production was evaluated in vitro, and data compiled to reveal a donor-independent response to an increase or decrease in environmental pH. The results found that raising environmental pH significantly increased luminal community richness and decreased mucosal community evenness. This corresponded with an increased abundance of Ruminococcaceae Ruminococcus and Erysipelotrichaceae Erysipelatoclostridium, and a decreased abundance of Coriobacteriaceae Collinsella and Enterobacteriaceae Shigella for both the luminal and mucosal communities. Total SCFA levels were significantly higher, primarily due to an increase in acetic and 2-methylbutanoic acids. Lowering pH decreased luminal community evenness and decreased mucosal community evenness and richness. This corresponded with an increased abundance of Lachnospiraceae Enterocloster, Veillonellaceae Megasphaera, Veillonellaceae Sporomusa, Erysipelotrichaceae Eubacterium, and Alcaligenaceae Sutterella, and decreased abundance of Odoribacteraceae Butyricimonas, Fusobacteriaceae Fusobacterium, Veillonellaceae Phascolarctobacterium, and multiple Enterobacteriaceae species for both the luminal and mucosal communities. Total SCFA levels were significantly lower, with an observed drop in acetic and propionic acids, and increased butyric and valeric acids. Taken together, these results indicate that alterations to environmental pH can modulate the gut microbiota community structure and function, and some changes may occur in a donor-independent manner.


Gastrointestinal Microbiome , Bacteroidetes , Fatty Acids, Volatile , Feces/microbiology , Firmicutes , Gastrointestinal Microbiome/physiology , Hydrogen-Ion Concentration
8.
J Pain ; 22(11): 1530-1544, 2021 11.
Article En | MEDLINE | ID: mdl-34029686

The present experiments determined the effects of the narrow-spectrum antibiotic vancomycin on inflammatory pain-stimulated and pain-depressed behaviors in rats. Persistent inflammatory pain was modeled using dilute formalin (0.5%). Two weeks of oral vancomycin administered in drinking water attenuated Phase II formalin pain-stimulated behavior, and prevented formalin pain-depressed wheel running. Fecal microbiota transplantation produced a non-significant trend toward reversal of the vancomycin effect on pain-stimulated behavior. Vancomycin depleted Firmicutes and Bacteroidetes populations in the gut while having a partial sparing effect on Lactobacillus species and Clostridiales. The vancomycin treatment effect was associated with an altered profile in amino acid concentrations in the gut with increases in arginine, glycine, alanine, proline, valine, leucine, and decreases in tyrosine and methionine. These results indicate that vancomycin may have therapeutic effects against persistent inflammatory pain conditions that are distal to the gut. PERSPECTIVE: The narrow-spectrum antibiotic vancomycin reduces pain-related behaviors in the formalin model of inflammatory pain. These data suggest that manipulation of the gut microbiome may be one method to attenuate inflammatory pain amplitude.


Amino Acids/drug effects , Anti-Bacterial Agents/pharmacology , Behavior, Animal/drug effects , Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Motor Activity/drug effects , Pain/drug therapy , Vancomycin/pharmacology , Animals , Disease Models, Animal , Female , Inflammation/complications , Pain/etiology , Rats, Inbred F344
9.
Appl Microbiol Biotechnol ; 105(8): 3353-3367, 2021 Apr.
Article En | MEDLINE | ID: mdl-33765200

The importance of the gut microbiota in human health and disease progression makes it a target for research in both the biomedical and nutritional fields. To date, a number of in vitro systems have been designed to recapitulate the gut microbiota of the colon ranging in complexity from the application of a single vessel to cultivate the community in its entirety, to multi-stage systems that mimic the distinct regional microbial communities that reside longitudinally through the colon. While these disparate types of in vitro designs have been employed previously, information regarding similarities and differences between the communities that develop within was less defined. Here, a comparative analysis of the population dynamics and functional production of short-chain fatty acids (SCFAs) was performed using the gut microbiota of the same donor cultured using a single vessel and a 3-stage colon system. The results found that the single vessel communities maintained alpha diversity at a level comparable to the distal regions of the 3-stage colon system. Yet, there was a marked difference in the type and abundance of taxa, particularly between families Enterobacteriaceae, Bacteroidaceae, Synergistaceae, and Fusobacteriaceae. Functionally, the single vessel community produced significantly less SCFAs compared to the 3-stage colon system. These results provide valuable information on how culturing technique effects gut microbial composition and function, which may impact studies relying on the application of an in vitro strategy. This data can be used to justify experimental strategy and provides insight on the application of a simplified versus complex study design. KEY POINTS : • A mature gut microbiota community can be developed in vitro using different methods. • Beta diversity metrics are affected by the in vitro culturing method applied. • The type and amount of short-chain fatty acids differed between culturing methods.


Gastrointestinal Microbiome , Microbiota , Colon , Fatty Acids, Volatile , Humans , Research Design
10.
Crit Care Explor ; 3(3): e0360, 2021 Mar.
Article En | MEDLINE | ID: mdl-33786436

OBJECTIVES: The intestinal microbiome can modulate immune function through production of microbial-derived short-chain fatty acids. We explored whether intestinal dysbiosis in children with sepsis leads to changes in microbial-derived short-chain fatty acids in plasma and stool that are associated with immunometabolic dysfunction in peripheral blood mononuclear cells. DESIGN: Prospective observational pilot study. SETTING: Single academic PICU. PATIENTS: Forty-three children with sepsis/septic shock and 44 healthy controls. MEASUREMENTS AND MAIN RESULTS: Stool and plasma samples were serially collected for sepsis patients; stool was collected once for controls. The intestinal microbiome was assessed using 16S ribosomal RNA sequencing and alpha- and beta-diversity were determined. We measured short-chain fatty acids using liquid chromatography, peripheral blood mononuclear cell mitochondrial respiration using high-resolution respirometry, and immune function using ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor-α. Sepsis patients exhibited reduced microbial diversity compared with healthy controls, with lower alpha- and beta-diversity. Reduced microbial diversity among sepsis patients (mainly from lower abundance of commensal obligate anaerobes) was associated with increased acetic and propionic acid and decreased butyric, isobutyric, and caproic acid. Decreased levels of plasma butyric acid were further associated with lower peripheral blood mononuclear cell mitochondrial respiration, which in turn, was associated with lower lipopolysaccharide-stimulated tumor necrosis factor-α. However, neither intestinal dysbiosis nor specific patterns of short-chain fatty acids were associated with lipopolysaccharide-stimulated tumor necrosis factor-α. CONCLUSIONS: Intestinal dysbiosis was associated with altered short-chain fatty acid metabolites in children with sepsis, but these findings were not linked directly to mitochondrial or immunologic changes. More detailed mechanistic studies are needed to test the role of microbial-derived short-chain fatty acids in the progression of sepsis.

11.
Arthritis Rheumatol ; 73(9): 1703-1712, 2021 09.
Article En | MEDLINE | ID: mdl-33682371

OBJECTIVE: Little is known about temporal changes in nasal bacteria in granulomatosis with polyangiitis (GPA). This study was undertaken to examine longitudinal changes in the nasal microbiome in association with relapse in GPA patients. METHODS: Bacterial 16S ribosomal RNA gene sequencing was performed on nasal swabs from 19 patients with GPA who were followed up longitudinally for a total of 78 visits, including 9 patients who experienced a relapse and 10 patients who remained in remission. Relative abundance of bacteria and ratios between bacteria were examined. Generalized estimating equation models were used to evaluate the association between bacterial composition and 1) disease activity and 2) levels of antineutrophil cytoplasmic antibody (ANCA) with specificity for proteinase 3 (PR3), adjusted for medication. RESULTS: Corynebacterium and Staphylococcus were the most abundant bacterial genera across all nasal samples. Patients with quiescent disease maintained a stable ratio of Corynebacterium to Staphylococcus across visits. In contrast, in patients who experienced a relapse, a significantly lower ratio was observed at the visit prior to relapse, followed by a higher ratio at the time of relapse (adjusted P < 0.01). Species-level analysis identified an association between a higher abundance of nasal Corynebacterium tuberculostearicum and 1) relapse (adjusted P = 0.04) and 2) higher PR3-ANCA levels (adjusted P = 0.02). CONCLUSION: In GPA, significant changes occur in the nasal microbiome over time and are associated with disease activity. The occurrence of these changes months prior to the onset of relapse supports a pathogenic role of nasal bacteria in GPA. Our results uphold existing hypotheses implicating Staphylococcus as an instigator of disease and have generated a novel finding involving Corynebacterium as a potential mediator of disease in GPA.


Granulomatosis with Polyangiitis/microbiology , Microbiota , Nasal Cavity/microbiology , Adult , Corynebacterium/isolation & purification , Female , Humans , Male , Middle Aged , Staphylococcus/isolation & purification
12.
Nat Commun ; 12(1): 755, 2021 02 02.
Article En | MEDLINE | ID: mdl-33531483

Fecal microbiota transplantation (FMT) is a successful therapeutic strategy for treating recurrent Clostridioides difficile infection. Despite remarkable efficacy, implementation of FMT therapy is limited and the mechanism of action remains poorly understood. Here, we demonstrate a critical role for the immune system in supporting FMT using a murine C. difficile infection system. Following FMT, Rag1 heterozygote mice resolve C. difficile while littermate Rag1-/- mice fail to clear the infection. Targeted ablation of adaptive immune cell subsets reveal a necessary role for CD4+ Foxp3+ T-regulatory cells, but not B cells or CD8+ T cells, in FMT-mediated resolution of C. difficile infection. FMT non-responsive mice exhibit exacerbated inflammation, impaired engraftment of the FMT bacterial community and failed restoration of commensal bacteria-derived secondary bile acid metabolites in the large intestine. These data demonstrate that the host's inflammatory immune status can limit the efficacy of microbiota-based therapeutics to treat C. difficile infection.


Clostridioides difficile/pathogenicity , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Clostridium Infections/immunology , Clostridium Infections/metabolism , Feces/microbiology , Forkhead Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Inflammation/immunology , Inflammation/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
14.
Gut Microbes ; 12(1): 1-15, 2020 11 09.
Article En | MEDLINE | ID: mdl-33305657

Clostridioides difficile is an enteric bacterial pathogen that can a cause nosocomial infection leading to debilitating colitis. The development of a murine model of C. difficile infection has led to fundamental discoveries in disease pathogenesis and the host immune response to infection. Recently, C. difficile endogenously present in the microbiota of mice has been reported and was found to complicate interpretation of mouse studies. Here, we report a novel C. difficile strain, named NTCD-035, isolated from the microbiota of our mouse colony. The presence of NTCD-035 in mice prior to challenge with a highly pathogenic C. difficile strain (VPI10463) led to significantly reduced disease severity. Phylogenetic characterization derived from whole genome sequencing and PCR ribotyping identified the isolate as a novel clade 1, ribotype 035 strain that lacks the pathogenicity locus required to produce toxins. Deficiency in toxin production along with sporulation capacity and secondary bile acid sensitivity was confirmed using in vitro assays. Inoculation of germ-free mice with NTCD-035 did not cause morbidity despite the strain readily colonizing the large intestine. Implementation of a culture-based screening procedure enabled the identification of mice harboring C. difficile in their microbiota, the establishment of a C. difficile-free mouse colony, and a monitoring system to prevent future contamination. Taken together, these data provide a framework for screening mice for endogenously harbored C. difficile and support clinical findings that demonstrate the therapeutic potential of non-toxigenic strains in preventing C. difficile associated disease. Abbreviations: PaLoc - Pathogenicity locus, CFUs - Colony forming units, TcdA - toxin-A, TcdB - toxin-B, CdtA - binary toxin A, CdtB - binary toxin B, CdtR - binary toxin R, NTCD - non-toxigenic C. difficile.


ADP Ribose Transferases/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridioides difficile/isolation & purification , Enterotoxins/genetics , Genome, Bacterial/genetics , ADP Ribose Transferases/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/classification , Clostridioides difficile/genetics , Enterotoxins/metabolism , Intestine, Large/microbiology , Mice , Mice, Inbred C57BL , Microbiota/genetics , Virulence/genetics , Whole Genome Sequencing
15.
PLoS One ; 15(11): e0236533, 2020.
Article En | MEDLINE | ID: mdl-33166284

Mycobacterium chelonae is a rapidly growing nontuberculous mycobacterium that is a common cause of nosocomial infections. Here we describe investigation of a possible nosocomial transmission of M. chelonae at the Hospital of the University of Pennsylvania (HUP). M. chelonae strains with similar high-level antibiotic resistance patterns were isolated from two patients who developed post-operative infections at HUP in 2017, suggesting a possible point source infection. The isolates, along with other clinical isolates from other patients, were sequenced using the Illumina and Oxford Nanopore technologies. The resulting short and long reads were hybrid assembled into draft genomes. The genomes were compared by quantifying single nucleotide variants in the core genome and assessed using a control dataset to quantify error rates in comparisons of identical genomes. We show that all M. chelonae isolates tested were highly dissimilar, as indicated by high pairwise SNV values, consistent with environmental acquisition and not a nosocomial point source. Our control dataset determined a threshold for evaluating identity between strains while controlling for sequencing error. Finally, antibiotic resistance genes were predicted for our isolates, and several single nucleotide variants were identified that have the potential to modulated drug resistance.


Cross Infection/diagnosis , DNA, Bacterial/analysis , Genome, Bacterial , Mycobacterium Infections/diagnosis , Mycobacterium chelonae/isolation & purification , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods , Cross Infection/epidemiology , Cross Infection/microbiology , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Humans , Mycobacterium Infections/epidemiology , Mycobacterium Infections/microbiology , Mycobacterium chelonae/classification , Mycobacterium chelonae/genetics , Philadelphia/epidemiology , Phylogeny
16.
Cell Host Microbe ; 28(3): 422-433.e7, 2020 09 09.
Article En | MEDLINE | ID: mdl-32822584

Children with inflammatory bowel diseases (IBD) are particularly vulnerable to infection with Clostridioides difficile (CDI). IBD and IBD + CDI have overlapping symptoms but respond to distinctive treatments, highlighting the need for diagnostic biomarkers. Here, we studied pediatric patients with IBD and IBD + CDI, comparing longitudinal data on the gut microbiome, metabolome, and other measures. The microbiome is dysbiotic and heterogeneous in both disease states, but the metabolome reveals disease-specific patterns. The IBD group shows increased concentrations of markers of inflammation and tissue damage compared with healthy controls, and metabolic changes associate with susceptibility to CDI. In IBD + CDI, we detect both metabolites associated with inflammation/tissue damage and fermentation products produced by C. difficile. The most discriminating metabolite found is isocaproyltaurine, a covalent conjugate of a distinctive C. difficile fermentation product (isocaproate) and an amino acid associated with tissue damage (taurine), which may be useful as a joint marker of the two disease processes.


Caproates/metabolism , Clostridioides difficile/metabolism , Clostridium Infections/complications , Inflammatory Bowel Diseases/complications , Metabolome , Metagenomics , Taurine/metabolism , Adolescent , Biomarkers , Child , Clostridioides difficile/genetics , DNA, Bacterial , Feces/microbiology , Female , Gastrointestinal Microbiome , Humans , Inflammatory Bowel Diseases/microbiology , Male
17.
PLoS One ; 15(6): e0234046, 2020.
Article En | MEDLINE | ID: mdl-32585680

The recent ban of the antimicrobial compound triclosan from use in consumer soaps followed research that showcased the risk it poses to the environment and to human health. Triclosan has been found in human plasma, urine and milk, demonstrating that it is present in human tissues. Previous work has also demonstrated that consumption of triclosan disrupts the gut microbial community of mice and zebrafish. Due to the widespread use of triclosan and ubiquity in the environment, it is imperative to understand the impact this chemical has on the human body and its symbiotic resident microbes. To that end, this study is the first to explore how triclosan impacts the human gut microbial community in vitro both during and after treatment. Through our in vitro system simulating three regions of the human gut; the ascending colon, transverse colon, and descending colon regions, we found that treatment with triclosan significantly impacted the community structure in terms of reduced population, diversity, and metabolite production, most notably in the ascending colon region. Given a 2 week recovery period, most of the population levels, community structure, and diversity levels were recovered for all colon regions. Our results demonstrate that the human gut microbial community diversity and population size is significantly impacted by triclosan at a high dose in vitro, and that the community is recoverable within this system.


Gastrointestinal Microbiome/drug effects , Triclosan/pharmacology , Biodiversity , Dose-Response Relationship, Drug , Gastrointestinal Microbiome/genetics , Humans
18.
Nature ; 581(7809): 470-474, 2020 05.
Article En | MEDLINE | ID: mdl-32461640

The gut of healthy human neonates is usually devoid of viruses at birth, but quickly becomes colonized, which-in some cases-leads to gastrointestinal disorders1-4. Here we show that the assembly of the viral community in neonates takes place in distinct steps. Fluorescent staining of virus-like particles purified from infant meconium or early stool samples shows few or no particles, but by one month of life particle numbers increase to 109 per gram, and these numbers seem to persist throughout life5-7. We investigated the origin of these viral populations using shotgun metagenomic sequencing of virus-enriched preparations and whole microbial communities, followed by targeted microbiological analyses. Results indicate that, early after birth, pioneer bacteria colonize the infant gut and by one month prophages induced from these bacteria provide the predominant population of virus-like particles. By four months of life, identifiable viruses that replicate in human cells become more prominent. Multiple human viruses were more abundant in stool samples from babies who were exclusively fed on formula milk compared with those fed partially or fully on breast milk, paralleling reports that breast milk can be protective against viral infections8-10. Bacteriophage populations also differed depending on whether or not the infant was breastfed. We show that the colonization of the infant gut is stepwise, first mainly by temperate bacteriophages induced from pioneer bacteria, and later by viruses that replicate in human cells; this second phase is modulated by breastfeeding.


Breast Feeding , Gastrointestinal Tract/virology , Viruses/isolation & purification , Adult , Bacteriolysis , Bacteriophages/genetics , Bacteriophages/isolation & purification , Feces/virology , Female , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Humans , Infant , Infant, Newborn , Lysogeny , Male , Meconium/virology , Prophages/genetics , Prophages/isolation & purification , Viruses/genetics
19.
J Crohns Colitis ; 14(11): 1600-1610, 2020 Nov 07.
Article En | MEDLINE | ID: mdl-32406906

BACKGROUND AND AIMS: Dysbiosis of the gut microbiota is a well-known correlate of the pathogenesis of inflammatory bowel disease [IBD]. However, few studies have examined the microbiome in very early-onset [VEO] IBD, which is defined as onset of IBD before 6 years of age. Here we focus on the viral portion of the microbiome-the virome-to assess possible viral associations with disease processes, reasoning that any viruses potentially associated with IBD might grow more robustly in younger subjects, and so be more detectable. METHODS: Virus-like particles [VLPs] were purified from stool samples collected from patients with VEO-IBD [n = 54] and healthy controls [n = 23], and characterized by DNA and RNA sequencing and VLP particle counts. RESULTS: The total number of VLPs was not significantly different between VEO-IBD and healthy controls. For bacterial viruses, the VEO-IBD subjects were found to have a higher ratio of Caudovirales vs to Microviridae compared to healthy controls. An increase in Caudovirales was also associated with immunosuppressive therapy. For viruses infecting human cells, Anelloviridae showed higher prevalence in VEO-IBD compared to healthy controls. Within the VEO-IBD group, higher levels of Anelloviridae DNA were also positively associated with immunosuppressive treatment. To search for new viruses, short sequences enriched in VEO-IBD samples were identified, and some could be validated in an independent cohort, although none was clearly viral; this provides sequence tags to interrogate in future studies. CONCLUSIONS: These data thus document perturbations to normal viral populations associated with VEO-IBD, and provide a biomarker-Anelloviridae DNA levels-potentially useful for reporting the effectiveness of immunosuppression.


Anelloviridae/isolation & purification , Feces/virology , Immunosuppressive Agents/therapeutic use , Inflammatory Bowel Diseases , Virome/physiology , Age of Onset , Biomarkers, Pharmacological/analysis , Child, Preschool , Correlation of Data , Female , Gastrointestinal Microbiome/physiology , Humans , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/physiopathology , Inflammatory Bowel Diseases/virology , Male , Metagenome/immunology , Risk Factors , United States/epidemiology , Viruses/classification , Viruses/isolation & purification
20.
Nat Microbiol ; 5(6): 838-847, 2020 06.
Article En | MEDLINE | ID: mdl-32284564

Initial microbial colonization and later succession in the gut of human infants are linked to health and disease later in life. The timing of the appearance of the first gut microbiome, and the consequences for the early life metabolome, are just starting to be defined. Here, we evaluated the gut microbiome, proteome and metabolome in 88 African-American newborns using faecal samples collected in the first few days of life. Gut bacteria became detectable using molecular methods by 16 h after birth. Detailed analysis of the three most common species, Escherichia coli, Enterococcus faecalis and Bacteroides vulgatus, did not suggest a genomic signature for neonatal gut colonization. The appearance of bacteria was associated with reduced abundance of approximately 50 human proteins, decreased levels of free amino acids and an increase in products of bacterial fermentation, including acetate and succinate. Using flux balance modelling and in vitro experiments, we provide evidence that fermentation of amino acids provides a mechanism for the initial growth of E. coli, the most common early colonizer, under anaerobic conditions. These results provide a deep characterization of the first microbes in the human gut and show how the biochemical environment is altered by their appearance.


Bacteria , Gastrointestinal Microbiome , Bacteria/classification , Bacteria/genetics , Cohort Effect , Computational Biology/methods , Feces/microbiology , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Metabolome , Metabolomics/methods , Metagenomics/methods , Phylogeny , Proteomics/methods
...