Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(3): e0372323, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38315026

ABSTRACT

The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE: The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.


Subject(s)
Mycobacterium tuberculosis , Oxidoreductases , Tuberculosis , Humans , Antitubercular Agents/chemistry , High-Throughput Screening Assays , Drug Design , Tuberculosis/drug therapy
2.
J Chem Theory Comput ; 17(6): 3814-3823, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34000809

ABSTRACT

Puckering of the sugar unit in nucleosides and nucleotides is an important structural aspect that directly influences the helical structure of nucleic acids. The preference for specific puckering modes in nucleic acids can be analyzed via in silico conformational analysis, but the large amount of conformations and the accuracy of the analysis leads to an extensive amount of computational time. In this paper, we show that the combination of geometry optimizations with the HF-3c method with single point energies at the RI-MP2 level results in accurate results for the puckering potential energy surface (PES) of DNA and RNA nucleosides while significantly reducing the necessary computational time. Applying this method to a series of known xeno nucleic acids (XNAs) allowed us to rapidly explore the puckering PES of each of the respective nucleosides and to explore the puckering PES of six-membered modified XNA (HNA and ß-homo-DNA) for the first time.


Subject(s)
Nucleosides/chemistry , Ribose/chemistry , DNA/chemistry , Models, Molecular , Nucleic Acid Conformation , Quantum Theory , RNA/chemistry , Thermodynamics
3.
Chembiochem ; 22(9): 1638-1645, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33427360

ABSTRACT

Xenobiology explores synthetic nucleic acid polymers as alternative carriers of genetic information to expand the central dogma. The xylo- and deoxyxylo-nucleic acids (XyNA and dXyNA), containing 3' epimers of riboses and deoxyriboses, are considered to be potential candidates for an orthogonal system. In this study, thermal and spectroscopic analyses show that XyNA and dXyNA form stable hairpins. The dXyNA hairpin structure determined by NMR spectroscopy contains a flexible loop that locks the stem into a stable ladder-like duplex with marginal right-handed helicity. The reduced flexibility of the dXyNA duplex observed in the stem of the hairpin demonstrates that folding of dXyNA yields more stable structures described so far.


Subject(s)
Nucleic Acids/chemistry , Xylose/chemistry , Aptamers, Nucleotide/chemistry , Circular Dichroism , DNA/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation
4.
European J Org Chem ; 2020(26): 4022-4025, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32837299

ABSTRACT

Nucleosides with a bi(hetero)aryl nucleobase have unique potential applications as antiviral drugs and molecular probes. The need for transition metal catalysis to synthesize these nucleosides from pre-functionalized building blocks and the use of nucleobase protection groups results in expensive and tedious syntheses. Herein we report that 5-imidazolyl-uracil can be obtained by scalable Van Leusen imidazole synthesis and regioselectively introduced on ribose to obtain the desired nucleoside in a 5 step synthesis (total yield 55 %). The 5-imidazolyl moiety leads to improved fluorescence properties. The only side-product formed was characterized by 2D-NMR and X-ray crystallography and could be suppressed during synthesis in favor of the desired product.

5.
J Mol Evol ; 82(2-3): 93-109, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27002711

ABSTRACT

The first non-enzymatic self-replicating systems, as proposed by von Kiedrowski (Angew Chem Int Ed Engl 25(10):932-935, 1986) and Orgel (Nature 327(6120):346-347, 1987), gave rise to the analytical background still used today to describe artificial replicators. What separates a self-replicating from an autocatalytic system is the ability to pass on structural information (Orgel, Nature 358(6383):203-209, 1992). Utilising molecular information, nucleic acids were the first choice as prototypical examples. But early self-replicators showed parabolic over exponential growth due to the strongly bound template duplex after template-directed ligation of substrates. We propose a self-replicating scheme with a weakly bound template duplex, using an informational leaving group. Such a scheme is inspired by the role of tRNA as leaving group and information carrier during protein synthesis, and is based on our previous experience with nucleotide chemistry. We analyse theoretically this scheme and compare it to the classical minimal replicator model. We show that for an example hexanucleotide template mirroring that is used by von Kiedrowski (Bioorganic chemistry frontiers, 1993) for the analysis of the classical minimal replicator, the proposed scheme is expected to result in higher template self-replication rate. The proposed self-replicating scheme based on an informational leaving group is expected to outperform the classical minimal replicator because of a weaker template duplex bonding, resulting in reduced template inhibition.


Subject(s)
DNA Replication/physiology , Templates, Genetic , Models, Genetic , Nucleic Acids , Oligonucleotides , Origin of Life
6.
J Syst Chem ; 5: 5, 2014.
Article in English | MEDLINE | ID: mdl-25558290

ABSTRACT

BACKGROUND: Fatty acid vesicles are an important part of protocell models currently studied. As protocells can be considered as pre-biological precursors of cells, the models try to contribute to a better understanding of the (cellular) origin of life and emphasize on 2 major aspects: compartmentalization and replication. It has been demonstrated that lipid-based membranes are amenable to growth and division (shell replication). Furthermore compartmentalization creates a unique micro-environment in which biomolecules can accumulate and reactions can occur. Pioneering research by Sugawara, Deamer, Luisi, Szostak and Rasmussen gave more insight in obtaining autocatalytic, self-replicating vesicles capable of containing and reproducing nucleic acid sequences (core replication). Linking both core and shell replication is a challenging feat requiring thorough understanding of membrane dynamics and (auto)catalytic systems. A possible solution may lie in a class of compounds called nucleolipids, who combine a nucleoside, nucleotide or nucleobase with a lipophilic moiety. Early contributions by the group of Yanagawa mentions the prebiotic significance (as a primitive helical template) arising from the supramolecular organization of these compounds. Further contributions, exploring the supramolecular scope regarding phospoliponucleosides (e.g. 5'-dioleylphosphatidyl derivatives of adenosine, uridine and cytidine) can be accounted to Baglioni, Luisi and Berti. This emerging field of amphiphiles is being investigated for surface behavior, supramolecular assembly and even drug ability. RESULTS: A series of α/ß-hydroxy fatty acids and α-amino fatty acids, covalently bound to nucleoside-5'-monophosphates via a hydroxyl or amino group on the fatty acid was examined for spontaneous self-assembly in spherical aggregates and their stability towards intramolecular cleavage. Staining the resulting hydrophobic aggregates with BODIPY-dyes followed by fluorescent microscopy gave several distinct images of vesicles varying from small, isolated spheres to higher order aggregates and large, multimicrometer sized particles. Other observations include rod-like vesicle precursors. NMR was used to assess the stability of a representative sample of nucleolipids. 1D 31P NMR revealed that ß-hydroxy fatty acids containing nucleotides were pH-stable while the α-analogs are acid labile. Degradation products identified by [1H-31P] heteroTOCSY revealed that phosphoesters are cleaved between sugar and phosphate, while phosphoramidates are also cleaved at the lipid-phosphate bond. For the latter compounds, the ratio between both degradation pathways is influenced by the nucleobase moiety. However no oligomerization of nucleotides was observed; nor the formation of 3'-5'-cyclic nucleotides, possible intermediates for oligonucleotide synthesis. CONCLUSIONS: The nucleolipids with a deoxyribose sugar moiety form small or large vesicles, rod-like structures, vesicle aggregates or large vesicles. Some of these aggregates can be considered as intermediate forms in vesicle formation or division. However, we could not observe nucleotide polymerization or cyclic nucleotide function of these nucleolipids, regardless of the sugar moiety that is investigated (deoxyribose, ribose, xylose). To unravel this observation, the chemical stability of the constructs was studied. While the nucleolipids containing ß-hydroxy fatty acids are stable as well in base as in acid circumstances, others degraded in acidic conditions. Phosphoramidate nucleolipids hydrolyzed by P-N as well as P-O bond cleavage where the ratio between both pathways depends on the nucleobase. Diester constructs with an α-hydroxy stearic acid degraded exclusively by hydrolysis of the 5'-O-nucleoside ester bond. As the compounds are too stable and harsh conditions would destruct the material itself, more reactive species such as lipid imidazolates of nucleotides need to be synthesized to further analyze the potential polymerization process. Graphical AbstractVesicle information of a nucleolipid consisting of a nucleoside 5'-monophosphate and a α-hydroxy fatty acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...