Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-19117796

ABSTRACT

Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H(2)O-NaCl-KCl-CO(2)-CH(4), with temperature and pressure intervals of 210-413 degrees C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments.


Subject(s)
Quartz/analysis , Spectrum Analysis, Raman/methods , Central America , Mining , Temperature
2.
Inorg Chem ; 38(20): 4413-4421, 1999 Oct 04.
Article in English | MEDLINE | ID: mdl-11671151

ABSTRACT

We report the synthesis and the structural and magnetic characterization of two new compounds: dibromobis(pdmp)copper(II), CuBr(2)C(22)H(24)N(4) (1), and dichlorobis(pdmp)copper(II), CuCl(2)C(22)H(24)N(4) (2), where pdmp = 1-phenyl-3,5-dimethylpyrazole. The structures were refined by full-matrix least-squares techniques to R1 = 0.0620 and 0.0777, respectively. Compound 1 belongs to the space group P2(1)/n with a = 8.165(5) Å, b = 10.432(3) Å, c = 13.385(4) Å, beta = 100.12(4) degrees, and Z = 2. Compound 2 belongs to the space group P2(1)/c with a = 8.379(2) Å, b = 22.630(2) Å, c = 12.256(2) Å, beta = 98.43(3) degrees, and Z = 4. It has the same molecular formula as a compound reported previously but a different crystal structure. Detailed single-crystal EPR measurements were performed for single-crystal samples of 1 and 2 at 9 and 35 GHz and at room temperature. The positions and line widths of the EPR lines were measured as a function of the magnetic field orientation in three orthogonal planes. The data were used to study the electronic properties of the copper ions and to evaluate the exchange interactions between them. Our results are discussed in terms of the electronic pathways for superexchange between copper ions, which are provided by the stacking of pyrazole and phenyl rings of neighboring molecules and by hydrogen-halogen bonds.

SELECTION OF CITATIONS
SEARCH DETAIL