Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Oncol Ther ; 12(1): 31-55, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38289576

ABSTRACT

This review summarizes development of large surface area microparticle paclitaxel (LSAM-PTX) and docetaxel (LSAM-DTX) for local treatment of primary carcinomas with emphasis on immunomodulation. Intratumoral (IT) delivery of LSAM-PTX and LSAM-DTX provides continuous, therapeutic drug levels for several weeks. Preclinical studies and clinical trials reported a reduction in tumor volume (TV) and immunomodulation in primary tumor and peripheral blood with increases in innate and adaptive immune cells and decreases in suppressor cells. Increased levels of checkpoint expression of immune cells occurred in clinical trials of high-risk non-muscle-invasive bladder cancer (LSAM-DTX) and unresectable localized pancreatic cancer (LSAM-PTX). TV reduction and increases in immune effector cells occurred following IT LSAM-DTX and IT LSAM-PTX together with anti-mCTLA-4 and anti-mPD-1, respectively. Synergistic benefits from combinatorial therapy in a 4T1-Luc breast cancer model included reduction of metastasis with IT LSAM-DTX + anti-mCTLA-4. IT LSAM-PTX and LSAM-DTX are tumoricidal, immune enhancing, and may improve solid tumor response to immune checkpoint inhibitors without additional systemic toxicity.

2.
Int J Nanomedicine ; 19: 689-697, 2024.
Article in English | MEDLINE | ID: mdl-38283196

ABSTRACT

The effects of intratumoral (IT) large surface area microparticle paclitaxel (LSAM-PTX) alone and in combination with systemic administration of the programmed cell death protein antibody (anti-mPD-1) were evaluated in a syngeneic murine model of melanoma. Groups of mice with subcutaneously implanted Clone M3 (Cloudman S91) tumors were treated with single and combination therapies. Tumor volume (TV) measurements, body weights, and clinical observations were followed in-life. At end of study, tumor-site tissues were collected, measured, and processed for flow cytometry along with blood and lymph nodes. The combination of LSAM-PTX + anti-mPD-1 resulted in an antitumoral response, which produced a significant decrease in TV compared to control animals. TV decreases also occurred in the LSAM-PTX and anti-mPD-1 groups. Flow cytometry analysis found increases in granulocytes and M2 macrophages and decreases in dendritic cells (DC) and monocytic myeloid-derived suppressor cells (M-MDSC) in tumor-site tissues. Increases in granulocytes and decreases in CD4+ T cells, macrophages, and M1 macrophages were found in the blood of animals administered the combination treatment. Increases in natural killer (NK) cells were found in lymph node tissue in the combination treatment group. These findings suggest that IT LSAM-PTX may provide benefit in the local treatment of melanomas and may synergize with systemic anti-PD-1 therapy, leading to additional tumoricidal outcomes without added systemic toxicity.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Mice , Animals , Immune Checkpoint Inhibitors/pharmacology , Melanoma/drug therapy , Paclitaxel/pharmacology , Cell Line, Tumor , Combined Modality Therapy , Tumor Microenvironment
3.
Pancreas ; 52(3): e179-e187, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37782888

ABSTRACT

OBJECTIVES: Large surface area microparticle paclitaxel (LSAM-PTX) provides an intratumoral (IT) chemotherapeutic depot. Safety, tolerability, and tumor response to IT LSAM-PTX delivered by endoscopic ultrasound-fine needle injection were evaluated in subjects with unresectable locally advanced pancreatic cancer (LAPC). METHODS: Ten subjects treated in a dose escalation phase and 22 additional subjects receiving 2 injections, 4 weeks apart, of 15 mg/mL LSAM-PTX were followed for 12 months. Paclitaxel pharmacokinetics were evaluated, imaging at 3 and 6 months determined tumor response, and multiplex immunofluorescence was conducted to characterize local immune response. RESULTS: Most treatment-emergent adverse events were attributed to LAPC. Plasma paclitaxel levels were negligible. Eight subjects' tumors became resectable after IT LSAM-PTX, and 5 of 6 (83%) were resected with R0. Multiplex immunofluorescence of resected tumors demonstrated increased T cells, natural killer cells, and macrophages and decreased myeloid-derived suppressor cells. Six-month disease control rate was 94%, and median overall survival was 19.7 months in the 2-injection subjects. For nonresected and resected groups, overall survival times were 18.9 and 35.2 months, respectively. CONCLUSIONS: Neoadjuvant IT LSAM-PTX, in combination with SOC, was well tolerated and may provide benefits to LAPC patients, evidenced by enhanced immune response, improved disease control rate, restaging leading to surgery, and extended survival.


Subject(s)
Paclitaxel , Pancreatic Neoplasms , Humans , Injections, Intralesional , Neoadjuvant Therapy/methods , Pancreatic Hormones , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
4.
Drug Deliv Transl Res ; 13(2): 503-519, 2023 02.
Article in English | MEDLINE | ID: mdl-36058988

ABSTRACT

This report describes local administration of large surface area microparticle docetaxel (LSAM-DTX: ~ 3.5- to 7.5-µm-sized particles with high relative surface area) in preclinical oncology models and in a clinical trial in urothelial carcinoma. Reductions in tumor volumes were found following intratumoral (IT) injection of LSAM-DTX into human urologic carcinoma cell lines and syngeneic murine renal and breast cancer cell lines. Compared to IT injections of docetaxel solution typically administered intravenously, IT LSAM-DTX results in 40-fold more docetaxel retained within the tumor. The long residence time of LSAM-DTX within the tumor acts as a drug depot, allowing for continuous release of docetaxel, exposing tumor cells to high, therapeutic levels of chemotherapeutic for several weeks. Local LSAM-DTX results in tumoricidal effects at the site of deposition as well as in distant tumors, and IT LSAM-DTX in combination with immune checkpoint inhibitor therapy reduces or eliminates metastatic spread. Tumoricidal effects of local LSAM-DTX are accompanied by immunomodulation including increases in innate and adaptive immune cells in the tumor microenvironment and peripheral blood. Encouraging clinical results indicate that local administration of LSAM-DTX may provide therapeutic benefits for non-muscle invasive bladder cancer and muscle invasive bladder cancer patients; treatments were well-tolerated with few local and systemic adverse events and negligible systemic docetaxel exposure. Results of preclinical and clinical investigations summarized here indicate that local administration of LSAM-DTX may augment tumor response to systemically administered chemotherapy, targeted therapy, or immunotherapy without contributing to systemic toxicity.


Subject(s)
Antineoplastic Agents , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Animals , Mice , Docetaxel , Urinary Bladder Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
5.
J Urol ; 208(4): 821-829, 2022 10.
Article in English | MEDLINE | ID: mdl-35574612

ABSTRACT

PURPOSE: We investigated the safety, preliminary efficacy, and immune effects of large surface area microparticle docetaxel (LSAM-DTX) administered by direct injection after transurethral resection of bladder tumor (TURBT), and by intravesical instillation in high-risk nonmuscle-invasive bladder cancer. MATERIALS AND METHODS: The trial followed an open-label 3+3 dose escalation with additional enrollment at the high dose. After TURBT, subjects received direct injection LSAM-DTX into the resection site and intravesical LSAM-DTX, followed by 6-week induction and 3-week maintenance intravesical LSAM-DTX courses. Tumor recurrence was evaluated by cytology, cystoscopy, or biopsy. Pharmacokinetic analysis of blood and multiplex immunofluorescence of tumor microenvironment occurred pre- and post-LSAM-DTX. RESULTS: Nineteen subjects were enrolled, 14 with prior bacillus Calmette-Guérin exposure and 16 with ≥1 prior TURBT. Direct injection and intravesical LSAM-DTX were well tolerated. In the 3 lowest dose escalation cohorts the median recurrence-free survival was 5.4 months (10 patients, median followup 8.6 months). In the high-dose and expansion cohorts median recurrence-free survival was significantly increased (p <0.05, hazard ratio 0.29) to 12.2 months (9 patients, median followup 12.4 months). Systemic docetaxel exposure was negligible and increases in antitumor immune cells were found in the tumor microenvironment along with elevations in the PD-1, PD-L1 and CTLA-4 immune checkpoint inhibitor targets. CONCLUSIONS: Post-TURBT direct injection and intravesical LSAM-DTX were well tolerated and demonstrated clinical response for patients with high-risk nonmuscle-invasive bladder cancer. Favorable immune cell infiltration and checkpoint receptor increases following LSAM-DTX treatment warrants investigation alone as well as in combination with immune checkpoint inhibitor therapy.


Subject(s)
Urinary Bladder Neoplasms , Administration, Intravesical , BCG Vaccine/therapeutic use , Docetaxel/therapeutic use , Humans , Immune Checkpoint Inhibitors , Neoplasm Invasiveness/pathology , Neoplasm Recurrence, Local/pathology , Treatment Outcome , Tumor Microenvironment , Urinary Bladder Neoplasms/surgery
6.
Med Oncol ; 38(9): 106, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34331595

ABSTRACT

We describe here characterization of the response of local and metastatic disease and immunomodulation following intratumoral (IT) injection of submicron particle docetaxel (SPD) administered alone or in combination with systemic antibody anti-mCTLA-4 (anti-mCTLA-4) in the metastatic 4T1-Luc2-1A4 (4T1) murine breast cancer model. In-life assessments of treatment tolerance, tumor volume (TV), and metastasis were performed (n = 10 animals/group). At study end, immune cell populations in tumor-site tissues and peripheral blood were analyzed using flow cytometry. Signs of distress typical of this aggressive tumor model occurred across all animals except for the combination treated which were asymptomatic and gained weight. TV at study end was significantly reduced in the combination group versus untreated [43% reduced (p < 0.05)] and vehicle controls [54% reduced (p < 0.0001)]. No evidence of thoracic metastasis was found in 40% of combination group animals and thoracic bioluminescence imaging (BLI) was reduced vs. untreated controls (p < 0.01). Significant elevations (p < 0.05) in CD4 + T, CD4 + helper T, Treg, and NKT cells were found in tumor and blood in SPD or combination treatment compared to controls or anti-mCTLA-4. Combination treatment increased tumor-associated CD8 + T cells (p < 0.01), peripheral B cells (p < 0.01), and tumor associated and circulating dendritic cells (DC) (p < 0.05). Tumor-associated NK cells were significantly increased in SPD ± anti-mCTLA-4 treatments (p < 0.01). Myeloid-derived suppressor cells (MDSC) were reduced in bloods in SPD ± anti-mCTLA-4 groups (p < 0.05). These data demonstrate that both SPD and anti-mCTLA-4 produce local anti-tumor effects as well as reductions in metastasis which are significantly enhanced when administered in combination.


Subject(s)
Antibodies, Monoclonal/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Docetaxel/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lymphocytes, Tumor-Infiltrating/immunology , Mammary Neoplasms, Animal/drug therapy , Animals , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , CTLA-4 Antigen/immunology , Combined Modality Therapy , Docetaxel/administration & dosage , Docetaxel/chemistry , Female , Injections, Intralesional , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mammary Neoplasms, Animal/immunology , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mice , Mice, Inbred BALB C , Myeloid-Derived Suppressor Cells/immunology , Particle Size , T-Lymphocytes, Regulatory/immunology , Tumor Burden
7.
Drug Deliv Transl Res ; 11(5): 1806-1817, 2021 10.
Article in English | MEDLINE | ID: mdl-33159289

ABSTRACT

This report describes local administration of submicron particle paclitaxel (SPP) (NanoPac®: ~ 800-nm-sized particles with high relative surface area with each particle containing ~ 2 billion molecules of paclitaxel) in preclinical models and clinical trials evaluating treatment of carcinomas. Paclitaxel is active in the treatment of epithelial solid tumors including ovarian, peritoneal, pancreatic, breast, esophageal, prostate, and non-small cell lung cancer. SPP has been delivered directly to solid tumors, where the particles are retained and continuously release the drug, exposing primary tumors to high, therapeutic levels of paclitaxel for several weeks. As a result, tumor cell death shifts from primarily apoptosis to both apoptosis and necroptosis. Direct local tumoricidal effects of paclitaxel, as well as stimulation of innate and adaptive immune responses, contribute to antineoplastic effects. Local administration of SPP may facilitate tumor response to systemically administered chemotherapy, targeted therapy, or immunotherapy without contributing to systemic toxicity. Results of preclinical and clinical investigations described here suggest that local administration of SPP achieves clinical benefit with negligible toxicity and may complement standard treatments for metastatic disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma , Lung Neoplasms , Carcinoma/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Paclitaxel
8.
Invest New Drugs ; 38(5): 1618-1626, 2020 10.
Article in English | MEDLINE | ID: mdl-32198648

ABSTRACT

Administration of chemotherapeutics as direct injections into tumors offers increased anti-tumor activity and reduced systemic toxicity. In this study, the Renca syngeneic murine xenograft model of renal cancer was used to evaluate the effects of intratumoral (IT) submicron particle docetaxel (NanoDoce®) on tumor growth and immunomodulation. Tumor volume (TV) was compared to controls, including intravenous (IV) chemotherapy. Flow cytometry of peripheral bloods and tumors was used to evaluate immune cell populations. Groups of animals were inoculated with a second Renca tumor at a site distant from the primary tumor. IT NanoDoce significantly reduced primary TV and reduced the growth rates of untreated secondary tumors. CD4+, CD8+ and Treg populations were increased in peripheral bloods from animals administered IT NanoDoce. Additional evaluation of the effect of IT NanoDoce on peripheral and local immune cell populations as well as the impact on sites of distant tumor growth are warranted.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Renal Cell/drug therapy , Docetaxel/administration & dosage , Kidney Neoplasms/drug therapy , Nanoparticles/administration & dosage , Animals , CD4-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/drug effects , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Female , Kidney Neoplasms/blood , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/drug effects , Tumor Burden/drug effects
9.
Cancers (Basel) ; 11(4)2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31022918

ABSTRACT

Intratumoral (IT) administration of submicron particle docetaxel (NanoDoce®, NanOlogy LLC, Fort Worth, TX, USA) and its efficacy against genitourinary-oncologic xenografts in rats and mice, xenograft-site docetaxel concentrations and immune-cell infiltration were studied. IT-NanoDoce®, IV-docetaxel and IT-vehicle were administered to clear cell renal carcinoma (786-O: rats), transitional cell bladder carcinoma (UM-UC-3: mice) and prostate carcinoma (PC-3: mice). Treatments were given every 7 days with 1, 2, or 3 doses administered. Animals were followed for tumor growth and clinical signs. At necropsy, 786-O and UM-UC-3 tumor-site tissues were evaluated by H&E and IHC and analyzed by LC-MS/MS for docetaxel concentration. Two and 3 cycles of IT-NanoDoce® significantly reduced UM-UC-3 tumor volume (p < 0.01) and eliminated most UM-UC-3 and 786-O tumors. In both models, NanoDoce® treatment was associated with (peri)tumor-infiltrating immune cells. Lymphoid structures were observed in IT-NanoDoce®-treated UM-UC-3 animals adjacent to tumor sites. IT-vehicle and IV-docetaxel exhibited limited immune-cell infiltration. In both studies, high levels of docetaxel were detected in NanoDoce®-treated animals up to 50 days post-treatment. In the PC-3 study, IT-NanoDoce® and IV-docetaxel resulted in similar tumor reduction. NanoDoce® significantly reduced tumor volume compared to IT-vehicle in all xenografts (p < 0.0001). We hypothesize that local, persistent, therapeutic levels of docetaxel from IT-NanoDoce® reduces tumor burden while increasing immune-cell infiltration. IT NanoDoce® treatment of prostate, renal and bladder cancer may result in enhanced tumoricidal effects.

10.
Int J Radiat Biol ; 92(8): 434-43, 2016 08.
Article in English | MEDLINE | ID: mdl-27258737

ABSTRACT

PURPOSE: A guinea pig skin model was developed to determine the dose-dependent response to soft X-ray radiation into the dermis. MATERIALS AND METHODS: X-ray exposure (50 kVp) was defined to a 4.0 × 4.0 cm area on the lateral surface of a guinea pig using lead shielding. Guinea pigs were exposed to a single fraction of X-ray irradiation ranging from 25-79 Gy via an XRAD320ix Biological Irradiator with the collimator removed. Gross skin changes were measured using clinical assessments defined by the Kumar scale. Skin contracture was assessed, as well as histological evaluations. RESULTS: Loss of dermal integrity was shown after a single dose of soft X-ray radiation at or above 32 Gy with the central 2.0 × 2.0 cm of the exposed site being the most affected. Hallmarks of the skin injury included moist desquamation, ulceration and wound contracture, as well as alterations in epithelium, dermis, muscle and adipose. Changes in the skin were time- and radiation dose-dependent. Full-thickness injury occurred without animal mortality or gross changes in the underlying organs. CONCLUSIONS: The guinea pig is an appropriate small animal model for the short-term screening of countermeasures for cutaneous radiation injury (CRI).


Subject(s)
Disease Models, Animal , Radiodermatitis/etiology , Radiodermatitis/pathology , Skin/pathology , Skin/radiation effects , X-Rays/adverse effects , Animals , Dose-Response Relationship, Radiation , Guinea Pigs , Radiation Dosage , Radiodermatitis/physiopathology , Skin/physiopathology
11.
Cancer Chemother Pharmacol ; 75(5): 1075-87, 2015 May.
Article in English | MEDLINE | ID: mdl-25898813

ABSTRACT

PURPOSE: This multicenter, open-label, dose-escalating, phase I study evaluated the safety, tolerability, pharmacokinetics and preliminary tumor response of a nanoparticulate formulation of paclitaxel (Nanotax®) administered intraperitoneally for multiple treatment cycles in patients with solid tumors predominantly confined to the peritoneal cavity for whom no other curative systemic therapy treatment options were available. METHODS: Twenty-one patients with peritoneal malignancies received Nanotax® in a modified dose-escalation approach utilizing an accelerated titration method. All patients enrolled had previously received chemotherapeutics and undergone surgical procedures, including 33 % with optimal debulking. Six doses (50-275 mg/m(2)) of Cremophor-free Nanotax® were administered intraperitoneally for one to six cycles (every 28 days). RESULTS: Intraperitoneal (IP) administration of Nanotax® did not lead to increases in toxicity over that typically associated with intravenous (IV) paclitaxel. No patient reported ≥Grade 2 neutropenia and/or ≥Grade 3 neurologic toxicities. Grade 3 thrombocytopenia unlikely related to study medication occurred in one patient. The peritoneal concentration-time profile of paclitaxel rose during the 2 days after dosing to peritoneal fluid concentrations 450-2900 times greater than peak plasma drug concentrations and remained elevated through the entire dose cycle. Best response assessments were made in 16/21 patients: Four patients were assessed as stable or had no response and twelve patients had increasing disease. Five of 21 patients with advanced cancers survived longer than 400 days after initiation of Nanotax® IP treatment. CONCLUSIONS: Compared to IV paclitaxel administration, Cremophor-free IP administration of Nanotax® provides higher and prolonged peritoneal paclitaxel levels with minimal systemic exposure and reduced toxicity.


Subject(s)
Nanoparticles/administration & dosage , Nanoparticles/adverse effects , Paclitaxel/administration & dosage , Paclitaxel/adverse effects , Peritoneal Neoplasms/drug therapy , Adult , Aged , Dose-Response Relationship, Drug , Female , Humans , Infusions, Parenteral , Male , Middle Aged , Nanoparticles/metabolism , Paclitaxel/pharmacokinetics , Peritoneal Neoplasms/metabolism
12.
Expert Opin Investig Drugs ; 23(4): 551-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24555825

ABSTRACT

INTRODUCTION: Thrombocytopenia is an abnormally low number of platelets in the blood resulting from either too few platelets being produced or existing platelets being destroyed. Severe thrombocytopenia leads to excessive bleeding and can be the result of numerous medical conditions or a side effect of medications or treatments. Although platelet transfusions are typically administered to correct thrombocytopenia, transfusions represent a temporary and unsustainable solution. As there is a limited supply of platelet units available for transfusion, along with the significant financial cost and risk of infection, investigation to uncover mechanisms that boost platelet production may have important clinical and therapeutic implications. Treatment with angiotensin 1 - 7 (A(1 - 7)) has been shown in a preclinical and clinical evaluations to have a positive effect on platelet recovery. AREAS COVERED: The authors provide an overview of the current treatment options available for platelet recovery and highlight the need for alternatives. Following on, the authors discuss the use of A(1 - 7) as a potential therapeutic option for platelet recovery, including its safety and efficacy. EXPERT OPINION: Current evidence provides a good basis for continued research and evaluation of the benefits of A(1 - 7) treatment in stimulating platelet recovery following myelosuppression. A(1 - 7) therapy has the potential to make a significant contribution to healthcare by providing standalone and additive treatments to address unmet medical needs and life-threatening diseases by utilizing the regenerative arm of the renin-angiotensin system.


Subject(s)
Angiotensin I/therapeutic use , Peptide Fragments/therapeutic use , Thrombocytopenia/drug therapy , Angiotensin I/chemistry , Angiotensin I/pharmacology , Animals , Blood Platelets/drug effects , Humans , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Renin-Angiotensin System , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...