Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(28): 24841-24852, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37483220

ABSTRACT

Interleukin-4 (IL-4) plays a key role in atopic diseases. It coordinates T-helper cell differentiation to subtype 2, thereby directing defense toward humoral immunity. Together with Interleukin-13, IL-4 further induces immunoglobulin class switch to IgE. Antibodies of this type activate mast cells and basophilic and eosinophilic granulocytes, which release pro-inflammatory mediators accounting for the typical symptoms of atopic diseases. IL-4 and IL-13 are thus major targets for pharmaceutical intervention strategies to treat atopic diseases. Besides neutralizing antibodies against IL-4, IL-13, or its receptors, IL-4 antagonists can present valuable alternatives. Pitrakinra, an Escherichia coli-derived IL-4 antagonist, has been evaluated in clinical trials for asthma treatment in the past; however, deficits such as short serum lifetime and potential immunogenicity among others stopped further development. To overcome such deficits, PEGylation of therapeutically important proteins has been used to increase the lifetime and proteolytic stability. As an alternative, glycoengineering is an emerging strategy used to improve pharmacokinetics of protein therapeutics. In this study, we have established different strategies to attach glycan moieties to defined positions in IL-4. Different chemical attachment strategies employing thiol chemistry were used to attach a glucose molecule at amino acid position 121, thereby converting IL-4 into a highly effective antagonist. To enhance the proteolytic stability of this IL-4 antagonist, additional glycan structures were introduced by glycoengineering utilizing eucaryotic expression. IL-4 antagonists with a combination of chemical and biosynthetic glycoengineering could be useful as therapeutic alternatives to IL-4 neutralizing antibodies already used to treat atopic diseases.

2.
Curr Biol ; 31(16): 3575-3585.e9, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34233161

ABSTRACT

Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Floods , Ion Channels , Stress, Physiological , Animals , Anions/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Oocytes , Xenopus
3.
Materials (Basel) ; 13(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207615

ABSTRACT

The design of flexible sensors which can be incorporated in textile structures is of decisive importance for the future development of wearables. In addition to their technical functionality, the materials chosen to construct the sensor should be nontoxic, affordable, and compatible with future recycling. Conductive fibres were produced by incorporation of carbon black into regenerated cellulose fibres. By incorporation of 23 wt.% and 27 wt.% carbon black, the surface resistance of the fibres reduced from 1.3 × 1010 Ω·cm for standard viscose fibres to 2.7 × 103 and 475 Ω·cm, respectively. Fibre tenacity reduced to 30-50% of a standard viscose; however, it was sufficient to allow processing of the material in standard textile operations. A fibre blend of the conductive viscose fibres with polyester fibres was used to produce a needle-punched nonwoven material with piezo-electric properties, which was used as a pressure sensor in the very low pressure range of 400-1000 Pa. The durability of the sensor was demonstrated in repetitive load/relaxation cycles. As a regenerated cellulose fibre, the carbon-black-incorporated cellulose fibre is compatible with standard textile processing operations and, thus, will be of high interest as a functional element in future wearables.

4.
Nature ; 561(7722): E8, 2018 09.
Article in English | MEDLINE | ID: mdl-29973716

ABSTRACT

In this Letter, an incorrect version of the Supplementary Information file was inadvertently used, which contained several errors. The details of references 59-65 were missing from the end of the Supplementary Discussion section on page 4. In addition, the section 'Text 3. Y2H on ICD interactions' incorrectly referred to 'Extended Data Fig. 4d' instead of 'Extended Data Fig. 3d' on page 3. Finally, the section 'Text 4. Interaction network analysis' incorrectly referred to 'Fig. 1b and Extended Data Fig. 6' instead of 'Fig. 2b and Extended Data Fig. 7' on page 3. These errors have all been corrected in the Supplementary Information.

5.
Nature ; 553(7688): 342-346, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29320478

ABSTRACT

The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance. Although the principles that govern LRR-RK signalling activation are emerging, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay, and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Leucine/metabolism , Protein Kinases/chemistry , Protein Kinases/metabolism , Arabidopsis/cytology , Arabidopsis/immunology , Arabidopsis/microbiology , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Reproducibility of Results , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL