Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(7): e0011453, 2023 07.
Article in English | MEDLINE | ID: mdl-37523406

ABSTRACT

BACKGROUND: Candida haemulonii complex-related species are pathogenic yeasts closely related to Candida auris with intrinsic antifungal resistance, but few epidemiological data are available. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed clinical and demographic characteristics of patients with fungemia due to C. haemulonii complex and related species (C. pseudohaemulonii, C. vulturna) reported in France during 2002-2021, and compared them to data of C. parapsilosis fungemia, as they all can be commensal of the skin. We also conducted a study on adult inpatients and outpatients colonized by C. haemulonii complex, managed at the University Hospital of Martinique during 2014-2020. Finally, we performed a literature review of fungemia due to C. haemulonii complex and related species reported in Medline (1962-2022). In total, we identified 28 fungemia due to C. haemulonii complex in France. These episodes were frequently associated with bacterial infection (38%) and high mortality rate (44%), and differed from C. parapsilosis fungemia by their tropical origin, mainly from Caribbean and Latin America. All isolates showed decreased in vitro susceptibility to amphotericin B and fluconazole. In Martinique, we found that skin colonization was frequent in the community population, while colonization was strongly associated with the presence of foreign devices in ICU patients. The literature review identified 274 fungemia episodes, of which 56 were individually described. As in our national series, published cases originated mainly from tropical regions and exhibited high crude mortality. CONCLUSIONS/SIGNIFICANCE: Multidrug-resistant C. haemulonii complex-related species are responsible for fungemia and colonization in community and hospital settings, especially in tropical regions, warranting closer epidemiological surveillance to prevent a potential C. auris-like threat.


Subject(s)
Candidiasis , Fungemia , Adult , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Fungemia/epidemiology , Fungemia/microbiology , Candida/genetics , Candidiasis/epidemiology , Candidiasis/microbiology , Microbial Sensitivity Tests , Hospitals, University
2.
Clin Infect Dis ; 75(7): 1242-1244, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35213688

ABSTRACT

A returned traveler to Uganda presented with a Plasmodium falciparum kelch13 A675V mutant infection that exhibited delayed clearance under artesunate therapy. Parasites were genetically related to recently reported Ugandan artemisinin-resistant A675V parasites. Adequate malaria prevention measures and clinical and genotypic surveillance are important tools to avoid and track artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Artesunate/therapeutic use , Drug Resistance/genetics , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins , Uganda
3.
Microbiol Spectr ; 9(2): e0113821, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34668768

ABSTRACT

The aim of this study was to evaluate diagnostic means, host factors, delay of occurrence, and outcome of patients with COVID-19 pneumonia and fungal coinfections in the intensive care unit (ICU). From 1 February to 31 May 2020, we anonymously recorded COVID-19-associated pulmonary aspergillosis (CAPA), fungemia (CA-fungemia), and pneumocystosis (CA-PCP) from 36 centers, including results on fungal biomarkers in respiratory specimens and serum. We collected data from 154 episodes of CAPA, 81 of CA-fungemia, 17 of CA-PCP, and 5 of other mold infections from 244 patients (male/female [M/F] ratio = 3.5; mean age, 64.7 ± 10.8 years). CA-PCP occurred first after ICU admission (median, 1 day; interquartile range [IQR], 0 to 3 days), followed by CAPA (9 days; IQR, 5 to 13 days), and then CA-fungemia (16 days; IQR, 12 to 23 days) (P < 10-4). For CAPA, the presence of several mycological criteria was associated with death (P < 10-4). Serum galactomannan was rarely positive (<20%). The mortality rates were 76.7% (23/30) in patients with host factors for invasive fungal disease, 45.2% (14/31) in those with a preexisting pulmonary condition, and 36.6% (34/93) in the remaining patients (P = 0.001). Antimold treatment did not alter prognosis (P = 0.370). Candida albicans was responsible for 59.3% of CA-fungemias, with a global mortality of 45.7%. For CA-PCP, 58.8% of the episodes occurred in patients with known host factors of PCP, and the mortality rate was 29.5%. CAPA may be in part hospital acquired and could benefit from antifungal prescription at the first positive biomarker result. CA-fungemia appeared linked to ICU stay without COVID-19 specificity, while CA-PCP may not really be a concern in the ICU. Improved diagnostic strategy for fungal markers in ICU patients with COVID-19 should support these hypotheses. IMPORTANCE To diagnose fungal coinfections in patients with COVID-19 in the intensive care unit, it is necessary to implement the correct treatment and to prevent them if possible. For COVID-19-associated pulmonary aspergillosis (CAPA), respiratory specimens remain the best approach since serum biomarkers are rarely positive. Timing of occurrence suggests that CAPA could be hospital acquired. The associated mortality varies from 36.6% to 76.7% when no host factors or host factors of invasive fungal diseases are present, respectively. Fungemias occurred after 2 weeks in ICUs and are associated with a mortality rate of 45.7%. Candida albicans is the first yeast species recovered, with no specificity linked to COVID-19. Pneumocystosis was mainly found in patients with known immunodepression. The diagnosis occurred at the entry in ICUs and not afterwards, suggesting that if Pneumocystis jirovecii plays a role, it is upstream of the hospitalization in the ICU.


Subject(s)
COVID-19/epidemiology , Coinfection/mortality , Fungemia/epidemiology , Pneumonia, Pneumocystis/epidemiology , Pulmonary Aspergillosis/epidemiology , Aged , Antifungal Agents/therapeutic use , COVID-19/mortality , COVID-19/pathology , Coinfection/epidemiology , Critical Care , Female , France/epidemiology , Fungemia/drug therapy , Fungemia/mortality , Galactose/analogs & derivatives , Galactose/blood , Humans , Intensive Care Units/statistics & numerical data , Male , Mannans/blood , Middle Aged , Pneumonia, Pneumocystis/drug therapy , Pneumonia, Pneumocystis/mortality , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/mortality , Retrospective Studies , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...