Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Pract Radiat Oncol ; 11(3): 177-184, 2021.
Article in English | MEDLINE | ID: mdl-33640315

ABSTRACT

PURPOSE: Radiation treatment planning for head and neck cancer is a complex process with much variability; automated treatment planning is a promising option to improve plan quality and efficiency. This study compared radiation plans generated from a fully automated radiation treatment planning system to plans generated manually that had been clinically approved and delivered. METHODS AND MATERIALS: The study cohort consisted of 50 patients treated by a specialized head and neck cancer team at a tertiary care center. An automated radiation treatment planning system, the Radiation Planning Assistant, was used to create autoplans for all patients using their original, approved contours. Common dose-volume histogram (DVH) criteria were used to compare the quality of autoplans to the clinical plans. Fourteen radiation oncologists, each from a different institution, then reviewed and compared the autoplans and clinical plans in a blinded fashion. RESULTS: Autoplans and clinical plans were very similar with regard to DVH metrics for coverage and critical structure constraints. Physician reviewers found both the clinical plans and autoplans acceptable for use; overall, 78% of the clinical plans and 88% of the autoplans were found to be usable as is (without any edits). When asked to choose which plan would be preferred for approval, 27% of physician reviewers selected the clinical plan, 47% selected the autoplan, 25% said both were equivalent, and 0% said neither. Hence, overall, 72% of physician reviewers believed the autoplan or either the clinical or autoplan was preferable. CONCLUSIONS: Automated radiation treatment planning creates consistent, clinically acceptable treatment plans that meet DVH criteria and are found to be appropriate on physician review.


Subject(s)
Head and Neck Neoplasms , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Organs at Risk , Radiotherapy Dosage
2.
Int J Radiat Oncol Biol Phys ; 109(3): 801-812, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33068690

ABSTRACT

PURPOSE: To develop a deep learning model that generates consistent, high-quality lymph node clinical target volumes (CTV) contours for head and neck cancer (HNC) patients, as an integral part of a fully automated radiation treatment planning workflow. METHODS AND MATERIALS: Computed tomography (CT) scans from 71 HNC patients were retrospectively collected and split into training (n = 51), cross-validation (n = 10), and test (n = 10) data sets. All had target volume delineations covering lymph node levels Ia through V (Ia-V), Ib through V (Ib-V), II through IV (II-IV), and retropharyngeal (RP) nodes, which were previously approved by a radiation oncologist specializing in HNC. Volumes of interest (VOIs) about nodal levels were automatically identified using computer vision techniques. The VOI (cropped CT image) and approved contours were used to train a U-Net autosegmentation model. Each lymph node level was trained independently, with model parameters optimized by assessing performance on the cross-validation data set. Once optimal model parameters were identified, overlap and distance metrics were calculated between ground truth and autosegmentations on the test set. Lastly, this final model was used on 32 additional patient scans (not included in original 71 cases) and autosegmentations visually rated by 3 radiation oncologists as being "clinically acceptable without requiring edits," "requiring minor edits," or "requiring major edits." RESULTS: When comparing ground truths to autosegmentations on the test data set, median Dice Similarity Coefficients were 0.90, 0.90, 0.89, and 0.81, and median mean surface distance values were 1.0 mm, 1.0 mm, 1.1 mm, and 1.3 mm for node levels Ia-V, Ib-V, II-IV, and RP nodes, respectively. Qualitative scoring varied among physicians. Overall, 99% of autosegmented target volumes were either scored as being clinically acceptable or requiring minor edits (ie, stylistic recommendations, <2 minutes). CONCLUSIONS: We developed a fully automated artificial intelligence approach to autodelineate nodal CTVs for patients with intact HNC. Most autosegmentations were found to be clinically acceptable after qualitative review when considering recommended stylistic edits. This promising work automatically delineates nodal CTVs in a robust and consistent manner; this approach can be implemented in ongoing efforts for fully automated radiation treatment planning.


Subject(s)
Deep Learning/standards , Head and Neck Neoplasms/diagnostic imaging , Lymph Nodes/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Head and Neck Neoplasms/radiotherapy , Humans , Pharynx/diagnostic imaging , Reproducibility of Results , Retrospective Studies , Tomography, X-Ray Computed/methods
3.
Phys Med Biol ; 63(21): 215026, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30403188

ABSTRACT

Accurate clinical target volume (CTV) delineation is essential to ensure proper tumor coverage in radiation therapy. This is a particularly difficult task for head-and-neck cancer patients where detailed knowledge of the pathways of microscopic tumor spread is necessary. This paper proposes a solution to auto-segment these volumes in oropharyngeal cancer patients using a two-channel 3D U-Net architecture. The first channel feeds the network with the patient's CT image providing anatomical context, whereas the second channel provides the network with tumor location and morphological information. Radiation therapy simulation computer tomography scans and their corresponding manually delineated CTV and gross tumor volume (GTV) delineations from 285 oropharyngeal patients previously treated at MD Anderson Cancer Center were used in this study. CTV and GTV delineations underwent rigorous group peer-review prior to the start of treatment delivery. The convolutional network's parameters were fine-tuned using a training set of 210 patients using 3-fold cross-validation. During hyper-parameter selection, we use a score based on the overlap (dice similarity coefficient (DSC)) and missed volumes (false negative dice (FND)) to minimize any possible under-treatment. Three auto-delineated models were created to estimate tight, moderate, and wide CTV margin delineations. Predictions on our test set (75 patients) resulted in auto-delineations with high overlap and close surface distance agreement (DSC > 0.75 on 96% of cases for tight and moderate auto-delineation models and 97% of cases having mean surface distance ⩽ 5.0 mm) to the ground-truth. We found that applying a 5 mm uniform margin expansion to the auto-delineated CTVs would cover at least 90% of the physician CTV volumes for a large majority of patients; however, determination of appropriate margin expansions for auto-delineated CTVs merits further investigation.


Subject(s)
Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Oropharyngeal Neoplasms/pathology , Oropharyngeal Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Humans , Oropharyngeal Neoplasms/diagnostic imaging , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Retrospective Studies
4.
J Glob Oncol ; 4: 1-11, 2018 07.
Article in English | MEDLINE | ID: mdl-30110221

ABSTRACT

Purpose We assessed automated contouring of normal structures for patients with head-and-neck cancer (HNC) using a multiatlas deformable-image-registration algorithm to better provide a fully automated radiation treatment planning solution for low- and middle-income countries, provide quantitative analysis, and determine acceptability worldwide. Methods Autocontours of eight normal structures (brain, brainstem, cochleae, eyes, lungs, mandible, parotid glands, and spinal cord) from 128 patients with HNC were retrospectively scored by a dedicated HNC radiation oncologist. Contours from a 10-patient subset were evaluated by five additional radiation oncologists from international partner institutions, and interphysician variability was assessed. Quantitative agreement of autocontours with independently physician-drawn structures was assessed using the Dice similarity coefficient and mean surface and Hausdorff distances. Automated contouring was then implemented clinically and has been used for 166 patients, and contours were quantitatively compared with the physician-edited autocontours using the same metrics. Results Retrospectively, 87% of normal structure contours were rated as acceptable for use in dose-volume-histogram-based planning without edit. Upon clinical implementation, 50% of contours were not edited for use in treatment planning. The mean (± standard deviation) Dice similarity coefficient of autocontours compared with physician-edited autocontours for parotid glands (0.92 ± 0.10), brainstem (0.95 ± 0.09), and spinal cord (0.92 ± 0.12) indicate that only minor edits were performed. The average mean surface and Hausdorff distances for all structures were less than 0.15 mm and 1.8 mm, respectively. Conclusion Automated contouring of normal structures generates reliable contours that require only minimal editing, as judged by retrospective ratings from multiple international centers and clinical integration. Autocontours are acceptable for treatment planning with no or, at most, minor edits, suggesting that automated contouring is feasible for clinical use and in the ongoing development of automated radiation treatment planning algorithms.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Head/anatomy & histology , Neck/anatomy & histology , Poverty/trends , Aged , Female , Head and Neck Neoplasms/pathology , Humans , Male , Organs at Risk , Retrospective Studies
5.
Int J Radiat Oncol Biol Phys ; 101(2): 468-478, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29559291

ABSTRACT

PURPOSE: Automating and standardizing the contouring of clinical target volumes (CTVs) can reduce interphysician variability, which is one of the largest sources of uncertainty in head and neck radiation therapy. In addition to using uniform margin expansions to auto-delineate high-risk CTVs, very little work has been performed to provide patient- and disease-specific high-risk CTVs. The aim of the present study was to develop a deep neural network for the auto-delineation of high-risk CTVs. METHODS AND MATERIALS: Fifty-two oropharyngeal cancer patients were selected for the present study. All patients were treated at The University of Texas MD Anderson Cancer Center from January 2006 to August 2010 and had previously contoured gross tumor volumes and CTVs. We developed a deep learning algorithm using deep auto-encoders to identify physician contouring patterns at our institution. These models use distance map information from surrounding anatomic structures and the gross tumor volume as input parameters and conduct voxel-based classification to identify voxels that are part of the high-risk CTV. In addition, we developed a novel probability threshold selection function, based on the Dice similarity coefficient (DSC), to improve the generalization of the predicted volumes. The DSC-based function is implemented during an inner cross-validation loop, and probability thresholds are selected a priori during model parameter optimization. We performed a volumetric comparison between the predicted and manually contoured volumes to assess our model. RESULTS: The predicted volumes had a median DSC value of 0.81 (range 0.62-0.90), median mean surface distance of 2.8 mm (range 1.6-5.5), and median 95th Hausdorff distance of 7.5 mm (range 4.7-17.9) when comparing our predicted high-risk CTVs with the physician manual contours. CONCLUSIONS: These predicted high-risk CTVs provided close agreement to the ground-truth compared with current interobserver variability. The predicted contours could be implemented clinically, with only minor or no changes.


Subject(s)
Algorithms , Deep Learning , Oropharyngeal Neoplasms/diagnostic imaging , Tumor Burden , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/pathology , Humans , Observer Variation , Oropharyngeal Neoplasms/pathology
6.
J Appl Clin Med Phys ; 18(4): 116-122, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28585732

ABSTRACT

To investigate the inter- and intra-fraction motion associated with the use of a low-cost tape immobilization technique as an alternative to thermoplastic immobilization masks for whole-brain treatments. The results of this study may be of interest to clinical staff with severely limited resources (e.g., in low-income countries) and also when treating patients who cannot tolerate standard immobilization masks. Setup reproducibility of eight healthy volunteers was assessed for two different immobilization techniques. (a) One strip of tape was placed across the volunteer's forehead and attached to the sides of the treatment table. (b) A second strip was added to the first, under the chin, and secured to the table above the volunteer's head. After initial positioning, anterior and lateral photographs were acquired. Volunteers were positioned five times with each technique to allow calculation of inter-fraction reproducibility measurements. To estimate intra-fraction reproducibility, 5-minute anterior and lateral videos were taken for each technique per volunteer. An in-house software was used to analyze the photos and videos to assess setup reproducibility. The maximum intra-fraction displacement for all volunteers was 2.8 mm. Intra-fraction motion increased with time on table. The maximum inter-fraction range of positions for all volunteers was 5.4 mm. The magnitude of inter-fraction and intra-fraction motion found using the "1-strip" and "2-strip" tape immobilization techniques was comparable to motion restrictions provided by a thermoplastic mask for whole-brain radiotherapy. The results suggest that tape-based immobilization techniques represent an economical and useful alternative to the thermoplastic mask.


Subject(s)
Cost-Benefit Analysis , Cranial Irradiation , Head , Immobilization/instrumentation , Healthy Volunteers , Humans , Immobilization/methods , Masks , Reproducibility of Results
7.
J Appl Clin Med Phys ; 18(1): 223-229, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28291911

ABSTRACT

Radiotherapy in a seated position may be indicated for patients who are unable to lie on the treatment couch for the duration of treatment, in scenarios where a seated treatment position provides superior anatomical positioning and dose distributions, or for a low-cost system designed using a fixed treatment beam and rotating seated patient. In this study, we report a novel treatment chair that was constructed to allow for three-dimensional imaging and treatment delivery while ensuring robust immobilization, providing reproducibility equivalent to that in the traditional supine position. Five patients undergoing radiation treatment for head-and-neck cancers were enrolled and were setup in the chair, with immobilization devices created, and then imaged with orthogonal X-rays in a scenario that mimicked radiation treatments (without treatment delivery). Six subregions of the acquired images were rigidly registered to evaluate intra- and interfraction displacement and chair construction. Displacements under conditions of simulated image guidance were acquired by first registering one subregion; the residual displacement of other subregions was then measured. Additionally, we administered a patient questionnaire to gain patient feedback and assess comparison to the supine position. Average inter- and intrafraction displacements of all subregions in the seated position were less than 2 and 3 mm, respectively. When image guidance was simulated, L-R and A-P interfraction displacements were reduced by an average of 1 mm, providing setup of comparable quality to supine setups. The enrolled patients, who had no indication for a seated treatment position, reported no preference in the seated or the supine position. The novel chair design provides acceptable inter- and intrafraction displacement, with reproducibility equivalent to that reported for patients in the supine position. Patient feedback will be incorporated in the refinement of the chair, facilitating treatment of head-and-neck cancer in patients who are unable to lie for the duration of treatment or for use in an economical fixed-beam setup.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Immobilization/instrumentation , Patient Positioning/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors/prevention & control , Aged , Head and Neck Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Male , Middle Aged , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Reproducibility of Results , Tomography, X-Ray Computed/methods
8.
J Am Assoc Lab Anim Sci ; 54(5): 545-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26424253

ABSTRACT

We have designed a method for immobilizing the subjects of small-animal studies using a study group-specific 3D-printed immobilizer that significantly reduces interfraction rotational variation. A cone-beam CT scan acquired from a single specimen in a study group was used to create a 3D-printed immobilizer that can be used for all specimens in the same study group. 3D printing allows for the incorporation of study-specific features into the immobilizer design, including geometries suitable for use in MR and CT scanners, holders for fiducial markers, and anesthesia nose cones of various sizes. Using metrics of rotational setup variations, we compared the current setup in our small-animal irradiation system, a half-pipe bed, with the 3D-printed device. We also assessed translational displacement within the immobilizer. The printed design significantly reduced setup variation, with average reductions in rotational displacement of 76% ± 3% (1.57 to 0.37°) in pitch, 78% ± 3% (1.85 to 0.41°) in yaw, and 87% ± 3% (5.39 to 0.70°) in roll. Translational displacement within the printed immobilizer was less than 1.5 ± 0.3 mm. This method of immobilization allows for repeatable setup when using MR or CT scans for the purpose of radiotherapy, streamlines the workflow, and places little burden on the study subjects.


Subject(s)
Immobilization/veterinary , Mice , Animals , Cone-Beam Computed Tomography , Immobilization/instrumentation , Magnetic Resonance Imaging , Printing, Three-Dimensional , Radiotherapy/methods , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...