Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
J Exp Bot ; 75(10): 2829-2847, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38436428

ABSTRACT

Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.


Subject(s)
Arabidopsis , Cytokinesis , Glucans , Arabidopsis/growth & development , Arabidopsis/metabolism , Glucans/metabolism , Microscopy
2.
Cell Rep ; 43(3): 113791, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38428420

ABSTRACT

The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.


Subject(s)
Golgi Apparatus , Membrane Proteins , Animals , Humans , Membrane Proteins/metabolism , Golgi Apparatus/metabolism , Cytoskeleton/metabolism , HeLa Cells , Vertebrates
3.
Health Phys ; 122(5): 618-624, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35307725

ABSTRACT

ABSTRACT: High-efficiency particulate air (HEPA) filters are widely employed by nuclear facilities to remove radiological particulate matter from their effluent exhaust streams. The purpose of this study is to evaluate the relationships between the 10-y HEPA filter lifetime deployment and its other performance indicators. This 10-y-long endeavor to collect and analyze data regarding the service life of HEPA filters at the Pacific Northwest National Laboratory began in 2010. A set of HEPA filters was selected, and the filters have been surveyed and analyzed at least annually to verify compliance with permit conditions. The study suggests the frequency of filter replacement should be based on the actual operational requirements, such as fume hood face velocity and/or efficiency test results, instead of on the prescribed filter "age limit" of 10 y from the date of manufacture (e.g., birth date) when operating under dry conditions. The study has now been completed, and over the past decade, all the HEPA filters have been replaced due to either technical issues as listed in this report or the previously recommended filter "age limit" of 10 y as prescribed by the oversight bodies. Experimentally determined failure rates are also determined from the data set and can be used to estimate the chances of HEPA filters surviving 15, 20, or even 30 y.


Subject(s)
Air Filters , Dust , Filtration/methods , Particulate Matter
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1821): 20190759, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33550951

ABSTRACT

Neurosecretory vesicles are highly specialized trafficking organelles that store neurotransmitters that are released at presynaptic nerve endings and are, therefore, important for animal cell-cell signalling. Despite considerable anatomical and functional diversity of neurons in animals, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many putative homologues of key neurosecretory vesicle proteins predate the origin of the first neurons, and some even the origin of the first animals. However, little is known about the molecular toolkit of these vesicles in non-bilaterian animals and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are present in unicellular organisms. Surprisingly, we find that the vesicular membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta. Our 3D vesicle reconstructions reveal that the choanoflagellates S. rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape reminiscent of the polarized organization of chemical synapses that secrete the content of neurosecretory vesicles into the synaptic cleft. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses and neurons. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.


Subject(s)
Biological Evolution , Choanoflagellata/physiology , R-SNARE Proteins/metabolism , Synaptic Vesicles/physiology
5.
Proc Natl Acad Sci U S A ; 117(22): 12452-12463, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32404426

ABSTRACT

Plastid isoprenoid-derived carotenoids serve essential roles in chloroplast development and photosynthesis. Although nearly all enzymes that participate in the biosynthesis of carotenoids in plants have been identified, the complement of auxiliary proteins that regulate synthesis, transport, sequestration, and degradation of these molecules and their isoprenoid precursors have not been fully described. To identify such proteins that are necessary for the optimal functioning of oxygenic photosynthesis, we screened a large collection of nonphotosynthetic (acetate-requiring) DNA insertional mutants of Chlamydomonas reinhardtii and isolated cpsfl1 The cpsfl1 mutant is extremely light-sensitive and susceptible to photoinhibition and photobleaching. The CPSFL1 gene encodes a CRAL-TRIO hydrophobic ligand-binding (Sec14) domain protein. Proteins containing this domain are limited to eukaryotes, but some may have been retargeted to function in organelles of endosymbiotic origin. The cpsfl1 mutant showed decreased accumulation of plastidial isoprenoid-derived pigments, especially carotenoids, and whole-cell focused ion-beam scanning-electron microscopy revealed a deficiency of carotenoid-rich chloroplast structures (e.g., eyespot and plastoglobules). The low carotenoid content resulted from impaired biosynthesis at a step prior to phytoene, the committed precursor to carotenoids. The CPSFL1 protein bound phytoene and ß-carotene when expressed in Escherichia coli and phosphatidic acid in vitro. We suggest that CPSFL1 is involved in the regulation of phytoene synthesis and carotenoid transport and thereby modulates carotenoid accumulation in the chloroplast.


Subject(s)
Carotenoids/metabolism , Chlamydomonas reinhardtii/growth & development , Chloroplasts/metabolism , Plant Proteins/metabolism , Chlamydomonas reinhardtii/classification , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Chloroplasts/chemistry , Chloroplasts/genetics , Photosynthesis , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Domains
6.
Science ; 366(6463): 326-334, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31624206

ABSTRACT

Collective cell contractions that generate global tissue deformations are a signature feature of animal movement and morphogenesis. However, the origin of collective contractility in animals remains unclear. While surveying the Caribbean island of Curaçao for choanoflagellates, the closest living relatives of animals, we isolated a previously undescribed species (here named Choanoeca flexa sp. nov.) that forms multicellular cup-shaped colonies. The colonies rapidly invert their curvature in response to changing light levels, which they detect through a rhodopsin-cyclic guanosine monophosphate pathway. Inversion requires actomyosin-mediated apical contractility and allows alternation between feeding and swimming behavior. C. flexa thus rapidly converts sensory inputs directly into multicellular contractions. These findings may inform reconstructions of hypothesized animal ancestors that existed before the evolution of specialized sensory and contractile cells.


Subject(s)
Choanoflagellata/physiology , Light , Actomyosin/metabolism , Animals , Biological Evolution , Choanoflagellata/cytology , Cyclic GMP/metabolism , Microvilli/physiology , Movement , Phosphoric Diester Hydrolases/metabolism , Protozoan Proteins/metabolism , Sensory Rhodopsins/metabolism
7.
Elife ; 82019 08 09.
Article in English | MEDLINE | ID: mdl-31397671

ABSTRACT

Production of healthy gametes in meiosis relies on the quality control and proper distribution of both nuclear and cytoplasmic contents. Meiotic differentiation naturally eliminates age-induced cellular damage by an unknown mechanism. Using time-lapse fluorescence microscopy in budding yeast, we found that nuclear senescence factors - including protein aggregates, extrachromosomal ribosomal DNA circles, and abnormal nucleolar material - are sequestered away from chromosomes during meiosis II and subsequently eliminated. A similar sequestration and elimination process occurs for the core subunits of the nuclear pore complex in both young and aged cells. Nuclear envelope remodeling drives the formation of a membranous compartment containing the sequestered material. Importantly, de novo generation of plasma membrane is required for the sequestration event, preventing the inheritance of long-lived nucleoporins and senescence factors into the newly formed gametes. Our study uncovers a new mechanism of nuclear quality control and provides insight into its function in meiotic cellular rejuvenation.


Subject(s)
Biological Factors/metabolism , Macromolecular Substances/metabolism , Meiosis , Saccharomycetales/growth & development , Saccharomycetales/metabolism , Microscopy, Fluorescence , Saccharomycetales/cytology , Time-Lapse Imaging
8.
Proc Natl Acad Sci U S A ; 116(33): 16631-16640, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31358635

ABSTRACT

Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559 Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.


Subject(s)
Intracellular Membranes/metabolism , Photosystem II Protein Complex/metabolism , Rubredoxins/metabolism , Thylakoids/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Electron Transport/drug effects , Intracellular Membranes/drug effects , Intracellular Membranes/ultrastructure , Iron/pharmacology , Models, Biological , Oxidation-Reduction , Protein Domains , Rubredoxins/chemistry , Thylakoids/drug effects , Thylakoids/ultrastructure
9.
PLoS Biol ; 17(4): e3000226, 2019 04.
Article in English | MEDLINE | ID: mdl-30978201

ABSTRACT

Although collar cells are conserved across animals and their closest relatives, the choanoflagellates, little is known about their ancestry, their subcellular architecture, or how they differentiate. The choanoflagellate Salpingoeca rosetta expresses genes necessary for animal development and can alternate between unicellular and multicellular states, making it a powerful model for investigating the origin of animal multicellularity and mechanisms underlying cell differentiation. To compare the subcellular architecture of solitary collar cells in S. rosetta with that of multicellular 'rosette' colonies and collar cells in sponges, we reconstructed entire cells in 3D through transmission electron microscopy on serial ultrathin sections. Structural analysis of our 3D reconstructions revealed important differences between single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid morphology consistent with higher levels of macropinocytotic activity. Comparison of multiple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell-cell contact networks, and colony arrangement. Importantly, we uncovered the presence of elongated cells in some rosette colonies that likely represent a distinct and differentiated cell type, pointing toward spatial cell differentiation. Intercellular bridges within choanoflagellate colonies displayed a variety of morphologies and connected some but not all neighbouring cells. Reconstruction of sponge choanocytes revealed ultrastructural commonalities but also differences in major organelle composition in comparison to choanoflagellates. Together, our comparative reconstructions uncover the architecture of cell differentiation in choanoflagellates and sponge choanocytes and constitute an important step in reconstructing the cell biology of the last common ancestor of animals.


Subject(s)
Choanoflagellata/physiology , Morphogenesis/physiology , Porifera/physiology , Animals , Cell Differentiation/genetics , Choanoflagellata/genetics , Choanoflagellata/metabolism , Microscopy, Electron, Transmission , Phylogeny , Porifera/genetics
10.
Front Cell Neurosci ; 13: 560, 2019.
Article in English | MEDLINE | ID: mdl-31920560

ABSTRACT

Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully understood how the supramolecular architecture of the lateral wall enables this unique form of cellular motility. Employing electron tomography of high-pressure frozen and freeze-substituted OHCs, we visualized the 3D structure and organization of the membrane and cytoskeletal components of the OHC lateral wall. The subsurface cisterna (SSC) is a highly prominent feature, and we report that the SSC membranes and lumen possess hexagonally ordered arrays of particles. We also find the SSC is tightly connected to adjacent actin filaments by short filamentous protein connections. Pillar proteins that join the plasma membrane to the cytoskeleton appear as variable structures considerably thinner than actin filaments and significantly more flexible than actin-SSC links. The structurally rich organization and rigidity of the SSC coupled with apparently weaker mechanical connections between the plasma membrane (PM) and cytoskeleton reveal that the membrane-cytoskeletal architecture of the OHC lateral wall is more complex than previously appreciated. These observations are important for our understanding of OHC mechanics and need to be considered in computational models of OHC electromotility that incorporate subcellular features.

11.
Proc Natl Acad Sci U S A ; 115(2): E210-E217, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279409

ABSTRACT

Xenophagy is a selective macroautophagic process that protects the host cytosol by entrapping and delivering microbes to a degradative compartment. Both noncanonical autophagic pathways and xenophagy are activated by microbes during infection, but the relative importance and function of these distinct processes are not clear. In this study, we used bacterial and host mutants to dissect the contribution of autophagic processes responsible for bacterial growth restriction of Listeria monocytogenesL. monocytogenes is a facultative intracellular pathogen that escapes from phagosomes, grows in the host cytosol, and avoids autophagy by expressing three determinants of pathogenesis: two secreted phospholipases C (PLCs; PlcA and PlcB) and a surface protein (ActA). We found that shortly after phagocytosis, wild-type (WT) L. monocytogenes escaped from a noncanonical autophagic process that targets damaged vacuoles. During this process, the autophagy marker LC3 localized to single-membrane phagosomes independently of the ULK complex, which is required for initiation of macroautophagy. However, growth restriction of bacteria lacking PlcA, PlcB, and ActA required FIP200 and TBK1, both involved in the engulfment of microbes by xenophagy. Time-lapse video microscopy revealed that deposition of LC3 on L. monocytogenes-containing vacuoles via noncanonical autophagy had no apparent role in restricting bacterial growth and that, upon access to the host cytosol, WT L. monocytogenes utilized PLCs and ActA to avoid subsequent xenophagy. In conclusion, although noncanonical autophagy targets phagosomes, xenophagy was required to restrict the growth of L. monocytogenes, an intracellular pathogen that damages the entry vacuole.


Subject(s)
Autophagy , Listeria monocytogenes/physiology , Macrophages/microbiology , Phagocytosis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cells, Cultured , Cytosol/metabolism , Cytosol/microbiology , Host-Pathogen Interactions , Listeria monocytogenes/genetics , Macrophages/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence , Mutation , Phagosomes/metabolism , Phagosomes/microbiology , Time-Lapse Imaging/methods , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
12.
Mil Med ; 180(3 Suppl): 171-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25747649

ABSTRACT

The goal of this study was to assess for the main sources of occupational stress, as well as self-reported symptoms of distress and post-traumatic stress disorder among U.S. Air Force (USAF) Distributed Common Ground System (DCGS) intelligence exploitation and support personnel. DCGS intelligence operators (n=1091) and nonintelligence personnel (n = 447) assigned to a USAF Intelligence, Surveillance, and Reconnaissance Wing responded to the web-based survey. The overall survey response rate was 31%. Study results revealed the most problematic stressors among DCGS intelligence personnel included high workload, low manning, as well as organizational leadership and shift work issues. Results also revealed 14.35% of DCGS intelligence operators' self-reported high levels of psychological distress (twice the rate of DCGS nonintelligence support personnel). Furthermore, 2.0% to 2.5% self-reported high levels of post-traumatic stress disorder symptoms, with no significant difference between groups. The implications of these findings are discussed along with recommendations for USAF medical and mental health providers, as well as operational leadership.


Subject(s)
Mental Health , Military Personnel/psychology , Risk Assessment/methods , Stress Disorders, Post-Traumatic/epidemiology , Workload/psychology , Adult , Female , Humans , Male , Middle Aged , Risk Factors , Self Report , Stress Disorders, Post-Traumatic/psychology , Stress, Psychological/psychology , Surveys and Questionnaires , United States/epidemiology , Young Adult
13.
PLoS Genet ; 10(11): e1004715, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25392990

ABSTRACT

Neuronal cargos are differentially targeted to either axons or dendrites, and this polarized cargo targeting critically depends on the interaction between microtubules and molecular motors. From a forward mutagenesis screen, we identified a gain-of-function mutation in the C. elegans α-tubulin gene mec-12 that triggered synaptic vesicle mistargeting, neurite swelling and neurodegeneration in the touch receptor neurons. This missense mutation replaced an absolutely conserved glycine in the H12 helix with glutamic acid, resulting in increased negative charges at the C-terminus of α-tubulin. Synaptic vesicle mistargeting in the mutant neurons was suppressed by reducing dynein function, suggesting that aberrantly high dynein activity mistargeted synaptic vesicles. We demonstrated that dynein showed preference towards binding mutant microtubules over wild-type in microtubule sedimentation assay. By contrast, neurite swelling and neurodegeneration were independent of dynein and could be ameliorated by genetic paralysis of the animal. This suggests that mutant microtubules render the neurons susceptible to recurrent mechanical stress induced by muscle activity, which is consistent with the observation that microtubule network was disorganized under electron microscopy. Our work provides insights into how microtubule-dynein interaction instructs synaptic vesicle targeting and the importance of microtubule in the maintenance of neuronal structures against constant mechanical stress.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Nerve Degeneration/genetics , Synaptic Transmission/genetics , Synaptic Vesicles/genetics , Tubulin/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Dendrites/genetics , Dendrites/metabolism , Dendrites/pathology , Dyneins/metabolism , Exocytosis , Humans , Microtubules/metabolism , Mutation, Missense , Nerve Degeneration/pathology , Neurites/metabolism , Neurites/pathology , Synaptic Vesicles/metabolism , Tubulin/metabolism
14.
Mil Med ; 179(8 Suppl): 63-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25102551

ABSTRACT

The goal of this study is to repeat a survey administered in 2010 to assess for changes in mental health among United States Air Force aircrew operating Predator/Reaper remotely piloted aircraft, also commonly referred to as "drones." Participants were assessed for self-reported sources of occupational stress, levels of clinical distress using the Outcome Questionnaire-45.2, and symptoms of post-traumatic stress disorder (PTSD) using the PTSD Checklist-Military Version. A total of 1,094 aircrew responded to the web-based survey composed of the commercially available standardized instruments mentioned above. The survey also contained nonstandardized items asking participants to report the main sources of their occupational stress, as well as questions addressing demographics and work-related characteristics. The estimated response rate to the survey was 49%. Study results reveal the most problematic self-reported stressors are operational: low manning, extra duties/administrative tasks, rotating shift work, and long hours. The results also reveal 10.72% of operators self-reported experiencing high levels of distress and 1.57% reported high levels of PTSD symptomology. The results are lower than findings from the 2010 survey and from soldiers returning from Iraq and Afghanistan. Implications of the study and recommendations for United States Air Force line leadership and mental health providers are discussed.


Subject(s)
Military Personnel/psychology , Occupational Diseases/epidemiology , Stress Disorders, Post-Traumatic/epidemiology , Stress, Psychological/epidemiology , Adolescent , Adult , Aerospace Medicine , Aircraft , Female , Health Surveys , Humans , Male , Occupational Diseases/etiology , Prevalence , Robotics , Stress Disorders, Post-Traumatic/etiology , Stress, Psychological/etiology , Time Factors , United States , Weapons , Work Schedule Tolerance/psychology , Workload/psychology , Young Adult
15.
J Cell Biol ; 206(2): 163-72, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25023515

ABSTRACT

The nuclear envelope (NE) consists of two evenly spaced bilayers, the inner and outer nuclear membranes. The Sad1p and UNC-84 (SUN) proteins and Klarsicht, ANC-1, and Syne homology (KASH) proteins that interact to form LINC (linker of nucleoskeleton and cytoskeleton) complexes connecting the nucleoskeleton to the cytoskeleton have been implicated in maintaining NE spacing. Surprisingly, the NE morphology of most Caenorhabditis elegans nuclei was normal in the absence of functional SUN proteins. Distortions of the perinuclear space observed in unc-84 mutant muscle nuclei resembled those previously observed in HeLa cells, suggesting that SUN proteins are required to maintain NE architecture in cells under high mechanical strain. The UNC-84 protein with large deletions in its luminal domain was able to form functional NE bridges but had no observable effect on NE architecture. Therefore, SUN-KASH bridges are only required to maintain NE spacing in cells subjected to increased mechanical forces. Furthermore, SUN proteins do not dictate the width of the NE.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Membrane Glycoproteins/physiology , Nuclear Envelope/metabolism , Nuclear Proteins/physiology , Stress, Physiological , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Nuclear Envelope/ultrastructure , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Physical Stimulation
16.
Neurology ; 83(7): 638-45, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25008397

ABSTRACT

OBJECTIVE: Determine whether United States Air Force (USAF) U-2 pilots (U2Ps) with occupational exposure to repeated hypobaria had lower neurocognitive performance compared to pilots without repeated hypobaric exposure and whether U2P neurocognitive performance correlated with white matter hyperintensity (WMH) burden. METHODS: We collected Multidimensional Aptitude Battery-II (MAB-II) and MicroCog: Assessment of Cognitive Functioning (MicroCog) neurocognitive data on USAF U2Ps with a history of repeated occupational exposure to hypobaria and compared these with control data collected from USAF pilots (AFPs) without repeated hypobaric exposure (U2Ps/AFPs MAB-II 87/83; MicroCog 93/80). Additional comparisons were performed between U2Ps with high vs low WMH burden. RESULTS: U2Ps with repeated hypobaric exposure had significantly lower scores than control pilots on reasoning/calculation (U2Ps/AFPs 99.4/106.5), memory (105.5/110.9), information processing accuracy (102.1/105.8), and general cognitive functioning (103.5/108.5). In addition, U2Ps with high whole-brain WMH count showed significantly lower scores on reasoning/calculation (high/low 96.8/104.1), memory (102.9/110.2), general cognitive functioning (101.5/107.2), and general cognitive proficiency (103.6/108.8) than U2Ps with low WMH burden (high/low WMH mean volume 0.213/0.003 cm(3) and mean count 14.2/0.4). CONCLUSION: In these otherwise healthy, highly functioning individuals, pilots with occupational exposure to repeated hypobaria demonstrated lower neurocognitive performance, albeit demonstrable on only some tests, than pilots without repeated exposure. Furthermore, within the U2P population, higher WMH burden was associated with lower neurocognitive test performance. Hypobaric exposure may be a risk factor for subtle changes in neurocognition.


Subject(s)
Barotrauma/pathology , Brain/pathology , Cognition Disorders/pathology , Military Personnel , Nerve Fibers, Myelinated/pathology , Adult , Aircraft , Barotrauma/complications , Cognition Disorders/etiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Occupational Exposure , Organ Size , United States
17.
Mol Biol Evol ; 31(9): 2342-55, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24899667

ABSTRACT

Reconstructing the evolution and ancestral functions of synaptic proteins promises to shed light on how neurons first evolved. The postsynaptic density (PSD) protein Homer scaffolds membrane receptors and regulates Ca(2+) signaling in diverse metazoan cell types (including neurons and muscle cells), yet its ancestry and core functions are poorly understood. We find that the protein domain organization and essential biochemical properties of metazoan Homer proteins, including their ability to tetramerize, are conserved in the choanoflagellate Salpingoeca rosetta, one of the closest living relatives of metazoans. Unlike in neurons, Homer localizes to the nucleoplasm in S. rosetta and interacts directly with Flotillin, a protein more commonly associated with cell membranes. Surprisingly, we found that the Homer/Flotillin interaction and its localization to the nucleus are conserved in metazoan astrocytes. These findings suggest that Homer originally interacted with Flotillin in the nucleus of the last common ancestor of metazoans and choanoflagellates and was later co-opted to function as a membrane receptor scaffold in the PSD.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Evolution, Molecular , Membrane Proteins/metabolism , Animals , Astrocytes/metabolism , Cell Nucleus/metabolism , Choanoflagellata/metabolism , Homer Scaffolding Proteins , Phylogeny , Rats
18.
Appl Environ Microbiol ; 80(7): 2193-205, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24487526

ABSTRACT

Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae.


Subject(s)
Carbohydrate Metabolism , Organelles/metabolism , Planctomycetales/metabolism , Plants/chemistry , Plants/microbiology , Fucose/metabolism , Gene Knockout Techniques , Gene Order , Genes, Bacterial , Microscopy, Electron, Transmission , Multigene Family , Organelles/genetics , Phylogeny , Planctomycetales/genetics , Planctomycetales/growth & development , Planctomycetales/ultrastructure , Rhamnose/metabolism
19.
Microsc Microanal ; 20(1): 152-63, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24252586

ABSTRACT

A variety of specimens including bacteria, ciliates, choanoflagellates (Salpingoeca rosetta), zebrafish (Danio rerio) embryos, nematode worms (Caenorhabditis elegans), and leaves of white clover (Trifolium repens) plants were high pressure frozen, freeze-substituted, infiltrated with either Epon, Epon-Araldite, or LR White resins, and polymerized. Total processing time from freezing to blocks ready to section was about 6 h. For epoxy embedding the specimens were freeze-substituted in 1% osmium tetroxide plus 0.1% uranyl acetate in acetone. For embedding in LR White the freeze-substitution medium was 0.2% uranyl acetate in acetone. Rapid infiltration was achieved by centrifugation through increasing concentrations of resin followed by polymerization at 100°C for 1.5-2 h. The preservation of ultrastructure was comparable to standard freeze substitution and resin embedding methods that take days to complete. On-section immunolabeling results for actin and tubulin molecules were positive with very low background labeling. The LR White methods offer a safer, quicker, and less-expensive alternative to Lowicryl embedding of specimens processed for on-section immunolabeling without traditional aldehyde fixatives.


Subject(s)
Freeze Substitution/methods , Immunohistochemistry/methods , Tissue Embedding/methods , Animals , Bacteria , Epoxy Resins , Plant Leaves
20.
Protoplasma ; 251(2): 429-48, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24258967

ABSTRACT

This article presents the best current practices for preparation of biological samples for examination as thin sections in an electron microscope. The historical development of fixation, dehydration, and embedding procedures for biological materials are reviewed for both conventional and low temperature methods. Conventional procedures for processing cells and tissues are usually done over days and often produce distortions, extractions, and other artifacts that are not acceptable for today's structural biology standards. High-pressure freezing and freeze substitution can minimize some of these artifacts. New methods that reduce the times for freeze substitution and resin embedding to a few hours are discussed as well as a new rapid room temperature method for preparing cells for on-section immunolabeling without the use of aldehyde fixatives.


Subject(s)
Microscopy, Electron/methods , Microtomy/methods , Tissue Fixation/methods , Animals , Cryopreservation , Freeze Substitution , Immunohistochemistry , Mice , Microscopy, Electron/instrumentation , Microtomy/instrumentation , Tissue Fixation/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...