Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Ecotoxicology ; 29(8): 1221-1228, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31531800

ABSTRACT

Passerines appear to have a greater sensitivity to mercury than other avian orders, and little data exists for mercury exposure in songbirds breeding at high latitudes. In this preliminary study, we examined mercury exposure in 12 migratory songbird species breeding in Denali National Park & Preserve, in subarctic interior Alaska. Overall, we analyzed 343 feather samples collected in 2015-2017 for their total mercury content. Mercury levels found in feathers indicates exposure during the period of feather growth, which we assume largely took place on the breeding ground. In this limited sample of songbird feathers, mercury concentrations ranged from near zero to 6.34 µg/g. Most species sampled showed relatively low mercury, but some individuals had high enough concentrations to be subject to adverse physiological and behavioral effects. There was an indication that mercury concentrations of breeding songbirds may vary by diet composition, with non-invertivorous species possibly tending towards lower mercury concentrations. Overall, however, the degree of mercury exposure observed was low for songbirds breeding in the subarctic. Further examination would prove useful in clarifying mercury exposure and ecological relationships in this under-studied region.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Feathers/chemistry , Mercury/analysis , Songbirds , Alaska , Animal Migration , Animals
2.
Theor Appl Genet ; 126(10): 2511-20, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23824201

ABSTRACT

Fusarium crown rot (FCR) is a serious cereal disease in semi-arid regions worldwide. In assisting the effort of breeding cultivars with enhanced resistance, we identified several barley genotypes with high levels of FCR resistance. One of these genotypes, AWCS079 which is a barley landrace originating from Japan, was investigated by developing and assessing three populations of recombinant inbred lines. Two QTL, one located on the long arm of chromosome 1H (designated as Qcrs.cpi-1H) and the other on 3HL (designated as Qcrs.cpi-3H), were found to be responsible for the FCR resistance of this genotype. Qcrs.cpi-1H is novel as no other FCR loci have been reported on this chromosome arm. Qcrs.cpi-3H co-located with a reduced height (Rht) locus and the effectiveness of the former was significantly affected by the latter. The total phenotypic variance explained by these two QTL was over 60 %. Significant effects were detected for each of the QTL in each of the three populations assessed. The existence of these loci with major effects should not only facilitate breeding and exploitation of FCR-resistant barley cultivars but also their further characterization based on fine mapping and map-based gene cloning.


Subject(s)
Disease Resistance/genetics , Fusarium/physiology , Hordeum/genetics , Hordeum/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Disease Resistance/immunology , Hordeum/anatomy & histology , Hordeum/immunology , Lod Score , Plant Diseases/microbiology , Reproducibility of Results
3.
Theor Appl Genet ; 125(7): 1385-92, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22733445

ABSTRACT

Traits related to spike morphology (SM), including grain density (GD), spike length (SL) and awn length (AL), are of central importance in cereal improvement. A recent study based on a two-row landrace of barley, TX9425, detected QTL controlling all of the three traits in a similar region on the long arm of chromosome 3H. To further characterize this chromosomal region, 12 pairs of near isogenic lines (NILs) for GD were generated from two populations between TX9425 and two different commercial cultivars. A population consisting of 1,028 lines segregating primarily for the target region was also developed using materials generated during the production of these NILs. Results from the analysis of the NILs and the NIL-derived population showed that these three traits were likely controlled by a single-locus which was mapped to a 2.84 cM interval between two SSR markers, GBM1495 and HVM33. Across the 12 pairs of NILs, the presence of the 3HL locus increased GD by 53.4 %, reduced SL and AL by 38.8 % and 62.7 %, respectively. In the NIL-derived population, the presence of the 3HL locus increased GD by 64.6 %, reduced SL and AL by 33.7 % and 62.6 %, respectively. An interesting question arising from this research is why some loci such as the one reported here affect several SM-related traits while others appear to affect one of these traits only. The NILs and the NIL-derived population generated in this study will help answer such questions by providing the germplasm to enable cloning and comparative analysis of the genes responsible for these SM-related traits.


Subject(s)
Chromosomes, Plant/genetics , Hordeum/anatomy & histology , Hordeum/genetics , Inbreeding , Quantitative Trait Loci/genetics , Seeds/anatomy & histology , Seeds/genetics , Chromosome Mapping , Chromosome Segregation/genetics , Genetic Linkage , Genetics, Population , Genotype
4.
J Med Virol ; 84(3): 536-42, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22246843

ABSTRACT

Human rhinoviruses (HRVs) can be divided into three species; HRV-A to HRV-C. Up to 148 different HRV (sero)types have been identified to date. Because of sequence similarity between 5'-NCR of HRVs and enteroviruses (EVs), it is problematic to design EV-specific RT-PCR assays. The aims of this study were to assess the rate of false-detection of different rhinoviruses by EV RT-PCR, and to evaluate the diagnostic and clinical significance of such cross-reactivity. In vitro RNA transcripts of HRV A-C created from cDNA templates were quantified spectrophotometrically. Six hundred twenty-one stool samples screened as part of routine diagnostic for EV, 17 EV-positive stool samples referred for typing, 288 stool samples submitted for gastroenteritis investigations, and 1,500 CSF samples were included in the study. EV-specific RT-PCR detected RNA transcripts of HRV-A1b, HRV-B14, and HRV-Crpat18 but with 10-1,000 reduced sensitivity compared to EV transcripts. Screening fecal samples by EV RT-PCR identified 13 positive samples identified subsequently as rhinoviruses; a further 26 HRV-positive samples were identified by nested HRV RT-PCR. All individuals were hospitalized and presented mostly with diarrhea. A total of 26 HRV types were identified (HRV-A: 46%; HRV-B: 13%; HRV-C: 41%). Results confirm that EV-specific RT-PCR can detect HRVs, and at a practical level, identify potential problems of interpretation if fecal samples are used for surrogate screening in cases of suspected viral meningitis. High detection frequencies (10%) and viral loads in stool samples provide evidence for enteric replication of HRV, and its association with enteric disease requires further etiological studies.


Subject(s)
Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Rhinovirus/classification , Rhinovirus/isolation & purification , Viral Load , Virus Shedding , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Diagnosis, Differential , Enterovirus/genetics , Enterovirus Infections/diagnosis , Enterovirus Infections/virology , Feces/virology , Humans , Infant , Infant, Newborn , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction/methods , Rhinovirus/genetics , Sensitivity and Specificity
5.
Genome ; 51(7): 524-33, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18545276

ABSTRACT

A comparison of approximately 4.5 kb of nucleotide sequence from the waxy locus (the granule-bound starch synthase I [GBSS I] locus) from a waxy line, BTxARG1, and a non-waxy line, QL39, revealed an extremely high level of sequence conservation. Among a total of 24 nucleotide differences and 9 indels, only 2 nucleotide changes resulted in altered amino acid residues. Protein folding prediction software suggested that one of the amino acid changes (Glu to His) may result in an altered protein structure, which may explain the apparently inactive GBSS I present in BTxARG1. This SNP was not found in the second waxy line, RTx2907, which does not produce GBSS I, and no other SNPs or indels were found in the approximately 4 kb of sequence obtained from RTx2907. Using one indel, the waxy locus was mapped to sorghum chromosome SBI-10, which is syntenous to maize chromosome 9; the waxy locus has been mapped to this maize chromosome. The distribution of indels in a diverse set of sorghum germplasm suggested that there are two broad types of non-waxy GBSS I alleles, each type comprising several alleles, and that the two waxy alleles in BTxARG1 and RTx2907 have evolved from one of the non-waxy allele types. The Glu/His polymorphism was found only in BTxARG1 and derived lines and has potential as a perfect marker for the BTxARG1 source of the waxy allele at the GBSS I locus. The indels correctly predicted the non-waxy phenotype in approximately 65% of diverse sorghum germplasm. The indels co-segregated perfectly with phenotype in two sorghum populations derived from crosses between a waxy and a non-waxy sorghum line, correctly identifying heterozygous lines. Thus, these indel markers or sequence-based SNP markers can be used to follow waxy alleles in sorghum breeding programs in selected pedigrees.


Subject(s)
Alleles , Plant Proteins/genetics , Sorghum/genetics , Amino Acid Substitution , Base Sequence , Chromosome Mapping , Conserved Sequence , Genetic Markers , Genomics , Mutation , Phenotype , Plant Proteins/chemistry , Polymorphism, Single Nucleotide , Protein Folding , Sequence Analysis, DNA , Starch Synthase/genetics
6.
Theor Appl Genet ; 117(3): 369-82, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18481043

ABSTRACT

Sorghum ergot, caused predominantly by Claviceps africana Frederickson, Mantle, de Milliano, is a significant threat to the sorghum industry worldwide. The objectives of this study were firstly, to identify molecular markers linked to ergot resistance and to two pollen traits, pollen quantity (PQ) and pollen viability (PV), and secondly, to assess the relationship between the two pollen traits and ergot resistance in sorghum. A genetic linkage map of sorghum RIL population R931945-2-2 x IS 8525 (resistance source) was constructed using 303 markers including 36 SSR, 117 AFLP , 148 DArT and two morphological trait loci. Composite interval mapping identified nine, five, and four QTL linked to molecular markers for percentage ergot infection (PCERGOT), PQ and PV, respectively, at a LOD >2.0. Co-location/linkage of QTL were identified on four chromosomes while other QTL for the three traits mapped independently, indicating that both pollen and non pollen-based mechanisms of ergot resistance were operating in this sorghum population. Of the nine QTL identified for PCERGOT, five were identified using the overall data set while four were specific to the group data sets defined by temperature and humidity. QTL identified on SBI-02 and SBI-06 were further validated in additional populations. This is the first report of QTL associated with ergot resistance in sorghum. The markers reported herein could be used for marker-assisted selection for this important disease of sorghum.


Subject(s)
Claviceps/physiology , Immunity, Innate/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Sorghum/genetics , Sorghum/microbiology , Cell Survival , Chromosomes, Plant/genetics , Crosses, Genetic , Environment , Epistasis, Genetic , Genetic Linkage , Inbreeding , Phenotype , Plant Diseases/microbiology , Pollen/cytology , Pollen/genetics , Quantitative Trait, Heritable , Reproducibility of Results , Sorghum/immunology
7.
Genome ; 50(8): 742-56, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17893734

ABSTRACT

Saccharum officinarum L. is an octoploid with 80 chromosomes and a basic chromosome number of x = 10. It has high stem sucrose and contributes 80% of the chromosomes to the interspecific sugarcane cultivars that are grown commercially for sucrose. A genetic linkage map was developed for S. officinarum (clone IJ76-514) using a segregating population generated from a cross between Q165 (a commercial sugarcane cultivar) and IJ76-514. In total, 40 AFLP and 72 SSR primer pairs were screened across the population, revealing 595 polymorphic bands inherited from IJ76-514. These 595 markers displayed a frequency distribution different from all other sugarcane genetic maps produced, with only 40% being simplex markers (segregated 1:1). Of these 240 simplex markers, 178 were distributed on 47 linkage groups (LGs) and 62 remained unlinked. With the addition of 234 duplex markers and 80 biparental simplex markers (segregating 3:1), 534 markers formed 123 LGs. Using the multi-allelic SSR markers, repulsion phase linkage, and alignment with the Q165 linkage map, 105 of the 123 LGs could be grouped into 10 homology groups (HGs). These 10 HGs were further assigned to the 8 HGs observed in cultivated sugarcane and S. spontaneum. Analysis of repulsion phase linkage indicated that IJ76-514 is neither a complete autopolyploid nor an allopolyploid. Detection of 28 repulsion linkages that occurred between 6 pairs of LGs located in 4 HGs suggested the occurrence of limited preferential chromosome pairing in this species.


Subject(s)
Chromosomes, Plant/genetics , Genetic Markers , Genome, Plant , Physical Chromosome Mapping , Saccharum/genetics , Alleles , Amplified Fragment Length Polymorphism Analysis , Chromosome Segregation , Crosses, Genetic , DNA, Plant/genetics , DNA, Plant/isolation & purification , Microsatellite Repeats , Polymorphism, Restriction Fragment Length , Polyploidy , Random Amplified Polymorphic DNA Technique
8.
Theor Appl Genet ; 112(7): 1306-17, 2006 May.
Article in English | MEDLINE | ID: mdl-16508765

ABSTRACT

The identification of markers linked to quantitative trait loci (QTLs) for increased sugar accumulation could improve the effectiveness of current breeding strategies in sugarcane. Progeny from a cross between a high sucrose producing cultivar, (denotes Australian plant breeding rights), and a Saccharum officinarum clone, IJ76-514 were grown in two field experiments in different years, and evaluated in the early and mid-season phases of crop maturity, to identify robust QTLs in affecting sucrose content in cane. Using an extensive genetic map constructed for with over 1,000 AFLP and SSR markers, a total of 37 QTLs were identified for brix and pol of which, 16 were detected in both experiments. Of these 37 QTL, 30 were clustered into 12 genomic regions in six of the eight homo(eo)logous groups. Each QTL explained from 3 to 9% of the phenotypic variation observed. Both positive and negative effects were identified and the location of the QTLs on linkage groups belonging to the same homo(eo)logy group suggested that a number of the QTLs were allelic forms of the same genes. Of the 37 QTLs identified, the majority were significant in both early and mature cane, but 8 were identified as early specific QTLs and 9 as mature cane QTLs. In total, 97 interactions were significant (P<10(-5)) and these were localised to 32 genomic regions of which 6 were detected with both years' data. Models including all the QTLs explained from 37 to 66% of the total phenotypic variation, depending on the trait. The results will be subsequently applied in marker assisted breeding.


Subject(s)
Carbohydrates/genetics , Crosses, Genetic , Quantitative Trait Loci , Saccharum/genetics , Alleles , Chromosome Mapping , Chromosomes, Plant , Data Interpretation, Statistical , Gene Frequency , Genes, Plant , Genetic Markers , Genetic Variation , Genome, Plant , Microsatellite Repeats , Population/genetics , Saccharum/growth & development , Seasons
9.
Theor Appl Genet ; 111(8): 1489-94, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16187119

ABSTRACT

A bacterial artificial chromosome (BAC) library was constructed from the bread wheat (Triticum aestivum L.) genotype 'Chinese Spring' ('CS'). The library consists of 395,136 clones with an estimated average insert size of 157 kb. This library provides an estimated 3.4-fold genome coverage for this hexaploid species. The genome coverage was confirmed by RFLP analysis of single-copy RFLP clones. The CS BAC library was used to develop simple sequence repeat (SSR) markers for targeted genome regions using five sequence-tagged-site (STS) markers designed from the chromosome arm of 3BS. The SSR markers for the targeted genome region were successfully obtained. However, similar numbers of new SSR markers were also generated for the other two homologous group 3 chromosomes. This data suggests that BAC clones belonging to all three chromosomes of homologous group 3 were isolated using the five STS primers. The potential impacts of these results on marker isolation in wheat and on library screening in general are discussed.


Subject(s)
Chromosomes, Artificial, Bacterial , Gene Library , Genome, Plant/genetics , Minisatellite Repeats/genetics , Triticum/genetics , DNA Primers , Genomics/methods , Polymorphism, Restriction Fragment Length
10.
Genome ; 48(3): 391-400, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16121236

ABSTRACT

Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.


Subject(s)
Fungi/physiology , Saccharum/genetics , Saccharum/microbiology , Sorghum/genetics , Sorghum/microbiology , Chromosome Mapping , Fungi/pathogenicity , Mycoses/genetics , Quantitative Trait Loci , Synteny
11.
Theor Appl Genet ; 110(5): 789-801, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15700149

ABSTRACT

Sugarcane varieties are complex polyploids carrying in excess of 100 chromosomes and are derived from interspecific hybridisation between the domesticated Saccharum officinarum and the wild relative S. spontaneum. A map was constructed in Denotes variety covered by Australian plant breeding rights., an Australian cultivar, from a segregating F1 population, using 40 amplified fragment length polymorphism (AFLP) primer combinations, five randomly amplified DNA fingerprints (RAF) primers and 72 simple sequence repeat (SSR) primers. Using these PCR-based marker systems, we generated 1,365 polymorphic markers, of which 967 (71%) were single-dose (SD) markers. Of these SD 967 markers, 910 were distributed on 116 linkage groups (LGs) with a total map length of 9,058.3 cM. Genome organisation was significantly greater than observed in previously reported maps for Saccharum spp. With the addition of 123 double-dose markers, 36 (3:1) segregating markers and a further five SD markers, 1,074 markers were mapped onto 136 LGs. Repulsion phase linkage detected preferential pairing for 40 LGs, which formed 11 LG pairs and three multi-chromosome pairing groups. Using SSRs, double-dose markers and repulsion phase linkage, we succeeded in forming 127 of the 136 LGs into eight homo(eo)logy groups (HG). Two HGs were each represented by two sets of LGs. These sets of LGs potentially correspond to S. officinarum chromosomes, with each set aligning to either end of one or two larger LGs. The larger chromosomes in the two HGs potentially correspond to S. spontaneum chromosomes. This suggestion is consistent with the different basic chromosome number of the two species that are hybridised to form sugarcane cultivars, S. spontaneum (x=8) and S. officinarum (x=10), and illustrates the structural relationship between the genomes of these two species. The discrepancy of coverage between HGs highlights the difficulty in mapping large parts of the genome.


Subject(s)
Chromosome Mapping , Chromosomes, Plant/genetics , Hybridization, Genetic , Saccharum/genetics , Australia , DNA Fingerprinting , Minisatellite Repeats/genetics , Nucleic Acid Amplification Techniques , Polymorphism, Restriction Fragment Length
12.
Genome ; 47(5): 988-93, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15499413

ABSTRACT

Two important factors influencing sugar yield, the primary focus of sugarcane plant breeding programs, are stalk number and suckering. Molecular markers linked to both of these traits are sought to assist in the identification of high sugar yield, high stalk number, low-suckering sugarcane clones. In this preliminary mapping study, 108 progeny from a biparental cross involving two elite Australian sugarcane clones were evaluated at two sites for two years for both stalk number and suckering. A total of 258 DNA markers, including both restriction fragment length polymorphisms (RFLPs) and radio-labelled amplified fragments (RAFs), were scored and evaluated using single-factor analysis. Sixteen (7 RFLPs and 9 RAFs) and 14 (6 RFLPs and 8 RAFs) markers were identified that were significantly associated (P < 0.01) with stalk number and suckering, respectively, across both years and sites. The seven and six RFLP markers associated with stalk number and suckering, respectively, were generated by eight different RFLP probes, of which seven had been mapped in sorghum and (or) sugarcane. Of significant interest was the observation that all seven RFLP probes could be shown to be located within or near QTLs associated with tillering and rhizomatousness in sorghum. This observation highlights the usefulness of comparative mapping between sorghum and sugarcane and suggests that the identification of useful markers for stalk number and suckering in sugarcane would be facilitated by focussing on sorghum QTLs associated with related traits.


Subject(s)
Genome, Plant , Polymorphism, Restriction Fragment Length , Quantitative Trait Loci/genetics , Saccharum/genetics , Sorghum/genetics , Chromosome Mapping , Crosses, Genetic , Genetic Markers
13.
Theor Appl Genet ; 109(4): 875-83, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15156283

ABSTRACT

As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class ( Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue ( Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.


Subject(s)
Basidiomycota , Immunity, Innate/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Sorghum/genetics , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Cluster Analysis , DNA Primers , Genes, Plant/genetics , Molecular Sequence Data , Plant Diseases/genetics , Saccharum/genetics , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology , Zea mays/genetics
14.
Genome ; 46(5): 738-44, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14608390

ABSTRACT

A major locus conferring resistance to the causal organism of powdery mildew, Erysiphe polygoni DC, in mungbean (Vigna radiata L. Wilczek) was identified using QTL analysis with a population of 147 recombinant inbred individuals. The population was derived from a cross between 'Berken', a highly susceptible variety, and ATF 3640, a highly resistant line. To test for response to powdery mildew, F7 and F8 lines were inoculated by dispersing decaying mungbean leaves with residual conidia of E. polygoni amongst the young plants to create an artificial epidemic and assayed in a glasshouse facility. To generate a linkage map, 322 RFLP clones were tested against the two parents and 51 of these were selected to screen the mapping population. The 51 probes generated 52 mapped loci, which were used to construct a linkage map spanning 350 cM of the mungbean genome over 10 linkage groups. Using these markers, a single locus was identified that explained up to a maximum of 86% of the total variation in the resistance response to the pathogen.


Subject(s)
Ascomycota/pathogenicity , Fabaceae/genetics , Fabaceae/microbiology , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Genes, Plant , Genetic Linkage , Immunity, Innate
15.
Theor Appl Genet ; 107(1): 116-22, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12835937

ABSTRACT

Sorghum midge is the one of the most damaging insect pests of grain sorghum production worldwide. At least three different mechanisms are involved in midge resistance. The genetic bases of these mechanisms, however, are poorly understood. In this study, for the first time, quantitative trait loci associated with two of the mechanisms of midge resistance, antixenosis and antibiosis, were identified in an RI (recombinant inbred) population from the cross of sorghum lines ICSV745 x 90562. Two genetic regions located on separate linkage groups were found to be associated with antixenosis and explained 12% and 15%, respectively, of the total variation in egg numbers/spikelet laid in a cage experiment. One region was significantly associated with antibiosis and explained 34.5% of the variation of the difference of egg and pupal counts in the RI population. The identification of genes for different mechanisms of midge resistance will be particularly useful for exploring new sources of midge resistance and for gene pyramiding of different mechanisms for increased security in sorghum breeding through marker-assisted selection.


Subject(s)
Chromosome Mapping , Insecta/physiology , Quantitative Trait Loci , Sorghum/genetics , Animals , Antibiosis , Crosses, Genetic , Drug Resistance , Eggs , Genetic Linkage , Genotype , Inbreeding , Insecta/drug effects , Plant Diseases/genetics , Pupa , Recombination, Genetic
16.
Theor Appl Genet ; 106(3): 559-67, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12589557

ABSTRACT

Heterosis is an important component of hybrid yield performance. Identifying high yielding hybrids is expensive and involves testing large numbers of hybrid combinations in multi-environment trials. Molecular marker diversity has been proposed as a more efficient method of selecting superior combinations. The aim of this study was to investigate the value of molecular marker-based distance information to identify high yielding grain sorghum hybrids in Australia. Data from 48 trials were used to produce hybrid performance-estimates for four traits (yield, height, maturity and stay green) for 162 hybrid combinations derived from 70 inbred parent lines. Each line was screened with 113 mapped RFLP markers. The Rogers distances between the parents of each hybrid were calculated from the marker information on a genome basis and individually for each of the ten linkage groups of sorghum. Some of the inbred parents were related so the hybrids were classified into 75 groups with each group containing individual hybrids that showed similar patterns of Rogers distances across linkage groups. Correlations between hybrid-group performance and hybrid-group Rogers distances were calculated. A significant correlation was observed between whole genome-based Rogers distance and yield ( r = 0.42). This association is too weak to be of value for identifying superior hybrid combinations. One reason for the generally poor association between parental genetic diversity and yield may be that important QTLs influencing heterosis are located in particular chromosome regions and not distributed evenly over the genome. Variation in the sign and magnitude of correlations between Rogers distance and hybrid-group performance for particular linkage groups observed in this study support this hypothesis. The concept of using diversity on individual linkage groups to predict performance was explored. Using data from just two linkage groups 38% of the variation in hybrid performance for grain yield could be explained. A model combining phenotypic trait data and parental diversity on particular linkage groups explained 71% of the variation in grain yield and has potential for use in the selection of heterotic hybrids.


Subject(s)
Genetic Linkage , Genetic Markers/genetics , Genetic Variation/genetics , Poaceae/genetics , Polymorphism, Restriction Fragment Length , Australia , Chimera , Chromosome Mapping , Crosses, Genetic , Poaceae/growth & development
17.
Plant Sci ; 160(6): 1115-1123, 2001 May.
Article in English | MEDLINE | ID: mdl-11337068

ABSTRACT

Analysis of a sugarcane (Saccharum spp.) EST (expressed sequence tag) library of 8678 sequences revealed approximately 250 microsatellite or simple sequence repeats (SSRs) sequences. A diversity of dinucleotide and trinucleotide SSR repeat motifs were present although most were of the (CGG)(n) trinucleotide motif. Primer sets were designed for 35 sequences and tested on five sugarcane genotypes. Twenty-one primer pairs produced a PCR product and 17 pairs were polymorphic. Primer pairs that produced polymorphisms were mainly located in the coding sequence with only a single pair located within the 5' untranslated region. No primer pairs producing a polymorphic product were found in the 3' untranslated region. The level of polymorphism (PIC value) in cultivars detected by these SSRs was low in sugarcane (0.23). However, a subset of these markers showed a significantly higher level of polymorphism when applied to progenitor and related genera (Erianthus sp. and Sorghum sp.). By contrast, SSRs isolated from sugarcane genomic libraries amplify more readily, show high levels of polymorphism within sugarcane with a higher PIC value (0.72) but do not transfer to related species or genera well.

18.
Genetica ; 104(2): 143-53, 1998 Oct.
Article in English | MEDLINE | ID: mdl-16220373

ABSTRACT

An assessment of genetic diversity within and between Saccharum, Old World Erianthus sect. Ripidium, and North American E.giganteus (S.giganteum) was conducted using Amplified Fragment Length Polymorphism (AFLP(TM)) markers. An automated gel scoring system (GelCompar(TM)) was successfully used to analyse the complex AFLP patterns obtained in sugarcane and its relatives. Similarity coefficient calculations and clustering revealed a genetic structure for Saccharum and Erianthus sect. Ripidium that was identical to the one previously obtained using other molecular marker types, showing the appropriateness of AFLP markers and the associated automated analysis in assessing genetic diversity in sugarcane. A genetic structure that correlated with cytotype (2n=30, 60, 90) was revealed within the North American species, E. giganteus (S.giganteum). Complex relationships among Saccharum, Erianthus sect. Ripidium, and North American E.giganteus were revealed and are discussed in the light of a similar study which involved RAPD markers.

19.
Genome ; 40(4): 428-32, 1997 Aug.
Article in English | MEDLINE | ID: mdl-18464838

ABSTRACT

The use of genomic slot blot hybridization enabled the differentiation of hybrids from selfs in Saccharum x Erianthus intergeneric crosses in which Saccharum was used as the female parent. Based on the genomic in situ hybridization technique, slot blots of DNA from the parents and the progeny were blocked with the Saccharum parent DNA and hybridized with the labelled male Erianthus genomic DNA. This technique allowed a rapid screening for hybrids and was sensitive enough to detect a 1/20 dilution of Erianthus in Saccharum DNA, which should enable the detection of most partial hybrids. The genomic slot blot hybridization technique was shown to be potentially useful for assessing crosses involving Saccharum species with either Old World Erianthus section Ripidium or North American Erianthus (= Saccharum) species. The effectiveness of the technique was assessed on 144 progeny of a Saccharum officinarum x Erianthus arundinaceus cross, revealing that 43% of the progeny were selfs. The importance of this test as a tool to support intergeneric breeding programs is discussed.

20.
Transgenic Res ; 5(4): 257-62, 1996 Jul.
Article in English | MEDLINE | ID: mdl-8755165

ABSTRACT

Five short hammerhead ribozymes (Rzs) were constructed and tested, using a range of in vitro reaction conditions, for catalytic activity against the mRNA encoding the lignin-forming peroxidase (TPX) of tobacco. Although all 5 Rzs were shown to be able to cleave the RNA substrate, percentage cleavage varied with pre-denaturation of Rz and substrate, incubation temperature, length of incubation and ribozyme (Rz)-to-substrate ratio. One Rz with two catalytic units and 60 nucleotides of complementary sequence in 3 regions was shown to most efficiently cleave the substrate under all in vitro conditions tested. This ribozyme cleaved better than the two single ribozymes from which it was made. The superior cleaving ability of this Rz was shown to be due to the accessibility of the chosen target site and to the increased length of the hybridizing arms spanning this accessible region of the RNA.


Subject(s)
Nicotiana/enzymology , Peroxidases/biosynthesis , Plants, Toxic , RNA, Catalytic/metabolism , Suppression, Genetic , Amino Acid Sequence , Base Sequence , Binding Sites , Drug Design , Gene Expression Regulation, Enzymologic , Molecular Sequence Data , Nucleic Acid Conformation , Peroxidases/genetics , Plants, Genetically Modified , RNA, Messenger/biosynthesis , Restriction Mapping , Substrate Specificity , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...