Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(10): e0140274, 2015.
Article in English | MEDLINE | ID: mdl-26484663

ABSTRACT

The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.


Subject(s)
Burkholderia pseudomallei/genetics , Gene Order , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Algorithms , Burkholderia pseudomallei/classification , Burkholderia pseudomallei/isolation & purification , Evolution, Molecular , Gene Transfer, Horizontal , Genetic Variation , Models, Genetic , Recombination, Genetic , Species Specificity
2.
PLoS One ; 8(7): e70147, 2013.
Article in English | MEDLINE | ID: mdl-23936152

ABSTRACT

How pathogenic bacteria adapt and evolve in the complex and variable environment of the host remains a largely unresolved question. Here we have used whole genome sequencing of Salmonella enterica serovar Typhimurium LT2 populations serially passaged in mice to identify mutations that adapt bacteria to systemic growth in mice. We found unique pathoadaptive mutations in two global regulators, phoQ and stpA, which increase the competitive indexes of the bacteria 3- to 5-fold. Also, all mouse-adapted lineages had changed the orientation of the hin invertable element, resulting in production of a FliC type of flagellum. Competition experiments in mice with locked flagellum mutants showed that strains expressing the FliC type of flagellum had a 5-fold increase in competitive index as compared to those expressing FljB type flagellum. Combination of the flagellum cassette inversion with the stpA mutation increased competitive indexes up to 20-fold. These experiments show that Salmonella can rapidly adapt to a mouse environment by acquiring a few mutations of moderate individual effect that when combined confer substantial increases in growth.


Subject(s)
Adaptation, Physiological/genetics , Bacterial Proteins/genetics , DNA Nucleotidyltransferases/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Molecular Chaperones/genetics , Mutation , Salmonella typhimurium/genetics , Animals , Bacterial Proteins/metabolism , DNA Nucleotidyltransferases/metabolism , DNA-Binding Proteins/metabolism , Female , Flagella/genetics , Flagella/ultrastructure , Genes, Regulator , Mice , Mice, Inbred BALB C , Molecular Chaperones/metabolism , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/growth & development , Salmonella typhimurium/pathogenicity , Sequence Analysis, DNA , Serial Passage
3.
FEMS Microbiol Lett ; 343(2): 113-20, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23521061

ABSTRACT

We describe here a strain of Yersinia pestis, G1670A, which exhibits a baseline mutation rate elevated 250-fold over wild-type Y. pestis. The responsible mutation, a C to T substitution in the mutS gene, results in the transition of a highly conserved leucine at position 689 to arginine (mutS(L689R)). When the MutSL 689R protein of G1670A was expressed in a ΔmutS derivative of Y. pestis strain EV76, mutation rates observed were equivalent to those observed in G1670A, consistent with a causal association between the mutS mutation and the mutator phenotype. The observation of a mutator allele in Yersinia pestis has potential implications for the study of evolution of this and other especially dangerous pathogens.


Subject(s)
Mutation , Phenotype , Yersinia pestis/genetics , Yersinia pestis/metabolism , Alleles , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Chromosome Mapping , Gene Expression , Genetic Complementation Test , Genome, Bacterial , Georgia (Republic) , Molecular Sequence Data , Polymorphism, Single Nucleotide , Sequence Alignment , Yersinia pestis/isolation & purification
4.
BMC Microbiol ; 12: 250, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23126230

ABSTRACT

BACKGROUND: Burkholderia pseudomallei is the etiological agent of melioidosis and a CDC category B select agent with no available effective vaccine. Previous immunizations in mice have utilized the lipopolysaccharide (LPS) as a potential vaccine target because it is known as one of the most important antigenic epitopes in B. pseudomallei. Complicating this strategy are the four different B. pseudomallei LPS O-antigen types: A, B, B2, and rough. Sero-crossreactivity is common among O-antigens of Burkholderia species. Here, we identified the presence of multiple B. pseudomallei O-antigen types and sero-crossreactivity in its near-neighbor species. RESULTS: PCR screening of O-antigen biosynthesis genes, phenotypic characterization using SDS-PAGE, and immunoblot analysis showed that majority of B. mallei and B. thailandensis strains contained the typical O-antigen type A. In contrast, most of B. ubonensis and B. thailandensis-like strains expressed the atypical O-antigen types B and B2, respectively. Most B. oklahomensis strains expressed a distinct and non-seroreactive O-antigen type, except strain E0147 which expressed O-antigen type A. O-antigen type B2 was also detected in B. thailandensis 82172, B. ubonensis MSMB108, and Burkholderia sp. MSMB175. Interestingly, B. thailandensis-like MSMB43 contained a novel serotype B positive O-antigen. CONCLUSIONS: This study expands the number of species which express B. pseudomallei O-antigen types. Further work is required to elucidate the full structures and how closely these are to the B. pseudomallei O-antigens, which will ultimately determine the efficacy of the near-neighbor B serotypes for vaccine development.


Subject(s)
Burkholderia/classification , Burkholderia/immunology , O Antigens/analysis , Animals , Biosynthetic Pathways/genetics , Cross Reactions , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Electrophoresis, Polyacrylamide Gel , Genes, Bacterial , Humans , Immunoblotting , Mice , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA , Serotyping
5.
PLoS One ; 7(11): e48228, 2012.
Article in English | MEDLINE | ID: mdl-23133618

ABSTRACT

In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/genetics , Prophages/genetics , Shiga Toxin 2/genetics , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/genetics , Area Under Curve , DNA/metabolism , Disease Outbreaks , Genetic Variation , Genomics , Genotype , Georgia (Republic) , Humans , Microbial Sensitivity Tests , Phenotype , Plasmids/metabolism , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Virulence , Yersinia pestis/genetics
6.
PLoS One ; 7(2): e31604, 2012.
Article in English | MEDLINE | ID: mdl-22359605

ABSTRACT

Plague disease caused by the gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19(th) century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen.


Subject(s)
Genome, Bacterial/genetics , Plague/genetics , Yersinia pestis/isolation & purification , Genetic Markers , Genetic Variation , Genomics , New Mexico , Plague/microbiology , Virulence/genetics , Yersinia pestis/genetics
7.
PLoS One ; 6(3): e17836, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21464989

ABSTRACT

BACKGROUND: Despite the decades-long use of Bacillus atrophaeus var. globigii (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS). RESULTS: Archival strains and two "present day" type strains were compared to simulant strains on different laboratory media. Several of the samples produced multiple colony morphotypes that differed from that of an archival isolate. To trace the microevolutionary history of these isolates, we obtained WGS data for several archival and present-day strains and morphotypes. Bacillus-wide phylogenetic analysis identified B. subtilis as the nearest neighbor to B. atrophaeus. The genome of B. atrophaeus is, on average, 86% identical to B. subtilis on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the "military" isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of "military" isolates on lactate-containing media, and showed that the "military" strains exhibited a hypersporulating phenotype. CONCLUSIONS: Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation.


Subject(s)
Bacillus/genetics , Biological Warfare Agents , Genetic Engineering/methods , Genome, Bacterial/genetics , Alleles , Bacillus/cytology , Bacillus/enzymology , Bacillus/isolation & purification , Base Pairing/genetics , Catalase/metabolism , Colony Count, Microbial , Computational Biology , DNA Mutational Analysis , Evolution, Molecular , Genotype , INDEL Mutation/genetics , Metabolome/genetics , Phenotype , Phylogeny , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Sequence Deletion , Spores, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...