Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Subst Use Addict Treat ; 156: 209208, 2024 01.
Article in English | MEDLINE | ID: mdl-37939904

ABSTRACT

INTRODUCTION: Fifteen states participating in the Opioid Use Disorder, Maternal Outcomes, and Neonatal Abstinence Syndrome Initiative Learning Community (OMNI LC) developed action plan goals and activities to address the rise in opioid use disorder (OUD) among birthing persons. In a separate initiative, Perinatal Quality Collaboratives (PQCs) from 12 states participating in Centers for Disease Control and Prevention (CDC)-supported activities hosted trainings to improve the provision of OUD services and implement protocols for screening and treatment in delivery facilities. METHODS: This descriptive study synthesizes qualitative data extracted from 15 OMNI LC state action plans, excerpts from qualitative interviews conducted with OMNI LC state teams, and quantitative data from quarterly project performance monitoring reports from 12 CDC-funded PQCs implementing quality improvement activities to address clinical service gaps for pregnant and postpartum people with OUD. Qualitative data were deidentified, coded as barriers or facilitators, then aggregated into emergent themes. Count data are presented for quantitative results. RESULTS: The OMNI LC states identified a lack of coordinated care among providers, stigma toward people with OUD, discontinued insurance coverage, and inconsistencies in screening and treating birthing people with OUD as barriers to accessing quality care. State-identified facilitators for access to quality care included: 1) improving engagement and communication between providers and other partners to integrate medical and behavioral health services post-discharge, and facilitate improved patient care postpartum; 2) training providers to prescribe medications for OUD, and to address bias and reduce patient stigma; 3) extending Medicaid coverage up to one year postpartum to increase access to and continuity of services; and 4) implementing screening, brief intervention, and referral to treatment (SBIRT) in clinical practice. PQCs demonstrated that increased provider trainings to treat OUD, improvements in implementation of standardized protocols, and use of evidence-based tools can facilitate access to and coordination of services in delivery facilities. CONCLUSION: State-identified facilitators for increasing access to care include coordinating integrated services, extending postpartum coverage, and provider trainings to improve screening and treatment. PQCs provide a platform for identifying emerging areas for quality improvement initiatives and implementing clinical best practices to provide comprehensive, quality perinatal care for birthing populations.


Subject(s)
Aftercare , Opioid-Related Disorders , Pregnancy , Female , Infant, Newborn , United States/epidemiology , Humans , Patient Discharge , Postpartum Period , Opioid-Related Disorders/diagnosis , Quality of Health Care
2.
J Med Chem ; 60(6): 2562-2572, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28231433

ABSTRACT

Sphingosine kinase (SphK) is the major source of the lipid mediator and G protein-coupled receptor agonist sphingosine-1-phosphate (S1P). S1P promotes cell growth, survival, and migration and is a key regulator of lymphocyte trafficking. Inhibition of S1P signaling has been proposed as a strategy for treatment of inflammatory diseases and cancer. Two different formats of an enzyme-based high-throughput screen yielded two attractive chemotypes capable of inhibiting S1P formation in cells. The molecular combination of these screening hits led to compound 22a (PF-543) with 2 orders of magnitude improved potency. Compound 22a inhibited SphK1 with an IC50 of 2 nM and was more than 100-fold selective for SphK1 over the SphK2 isoform. Through the modification of tail-region substituents, the specificity of inhibition for SphK1 and SphK2 could be modulated, yielding SphK1-selective, potent SphK1/2 dual, or SphK2-preferential inhibitors.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Amination , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Drug Discovery , Humans , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pyrrolidines/chemistry , Pyrrolidines/pharmacology
3.
Biochem J ; 444(1): 79-88, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22397330

ABSTRACT

SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.


Subject(s)
Lysophospholipids/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Pyrrolidines/pharmacology , Sphingosine/analogs & derivatives , Sulfones/pharmacology , Cell Line, Tumor , Cell Membrane Permeability , Humans , Lysophospholipids/blood , Methanol , Phosphorylation , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Sphingosine/blood , Sphingosine/metabolism , Substrate Specificity , Sulfones/chemical synthesis , Sulfones/metabolism
4.
Am J Physiol Renal Physiol ; 299(4): F712-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20668095

ABSTRACT

Activation of V2 receptors (V2R) during antidiuresis increases the permeability of the inner medullary collecting duct to urea and water. Extracellular osmolality is elevated as the concentrating capacity of the kidney increases. Osmolality is known to contribute to the regulation of collecting duct water (aquaporin-2; AQP2) and urea transporter (UT-A1, UT-A3) regulation. AQP1KO mice are a concentrating mechanism knockout, a defect attributed to the loss of high interstitial osmolality. A V2R-specific agonist, deamino-8-D-arginine vasopressin (dDAVP), was infused into wild-type and AQP1KO mice for 7 days. UT-A1 mRNA and protein abundance were significantly increased in the medullas of wild-type and AQP1KO mice following dDAVP infusion. The mRNA and protein abundance of UT-A3, the basolateral urea transporter, was significantly increased by dDAVP in both wild-type and AQP1KO mice. Semiquantitative immunoblots revealed that dDAVP infusion induced a significant increase in the medullary expression of the endoplasmic reticulum (ER) chaperone GRP78. Immunofluorescence studies demonstrated that GRP78 expression colocalized with AQP2 in principal cells of the papillary tip of the renal medulla. Using immunohistochemistry and immunogold electron microscopy, we demonstrate that vasopressin induced a marked apical targeting of GRP78 in medullary principal cells. Urea-sensitive genes, GADD153 and ATF4 (components of the ER stress pathway), were significantly increased in AQP1KO mice by dDAVP infusion. These findings strongly support an important role of vasopressin in the activation of an ER stress response in renal collecting duct cells, in addition to its role in activating an increase in UT-A1 and UT-A3 abundance.


Subject(s)
Heat-Shock Proteins/metabolism , Kidney Concentrating Ability/genetics , Kidney Medulla/drug effects , Kidney Medulla/metabolism , Membrane Transport Proteins/metabolism , Vasopressins/pharmacology , Animals , Aquaporin 1/genetics , Aquaporin 1/physiology , Cell Membrane/metabolism , Deamino Arginine Vasopressin/pharmacology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Chaperone BiP , Kidney Concentrating Ability/physiology , Kidney Medulla/physiopathology , Mice , Mice, Knockout , Models, Animal , Osmolar Concentration , RNA, Messenger , Urea Transporters
5.
Am J Physiol Renal Physiol ; 293(6): F1858-64, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17913837

ABSTRACT

Aquaporin (AQP) 1 null mice have a defect in the renal concentrating gradient because of their inability to generate a hyperosmotic medullary interstitium. To determine the effect of vasopressin on renal medullary gene expression, in the absence of high local osmolarity, we infused 1-deamino-8-d-arginine vasopressin (dDAVP), a V(2) receptor (V(2)R)-specific agonist, in AQP1 null mice for 7 days. cDNA microarray analysis was performed on the renal medullary tissue, and 5,140 genes of the possible 12,000 genes on the array were included in the analysis. In the renal medulla of AQP1 null mice, 245 transcripts were identified as increased by dDAVP infusion and 200 transcripts as decreased (1.5-fold or more). Quantitative real-time PCR measurements confirmed the increases seen for cyclin D1, early growth response gene 1, and activating transcription factor 3, genes associated with changes in cell cycle/growth. Changes in mRNA expression were correlated with changes in protein expression by semiquantitative immunoblotting; cyclin D1 and ATF3 were increased significantly in abundance following dDAVP infusion in the renal medulla of AQP1 null mice (161 and 461%, respectively). A significant increase in proliferation of medullary collecting ducts cells, following V(2)R activation, was identified by proliferating cell nuclear antigen immunohistochemistry; colocalization studies with AQP2 indicated that the increase in proliferation was primarily observed in principal cells of the inner medullary collecting duct (IMCD). V(2)R activation, via dDAVP, increased AQP2 and AQP3 protein abundance in the cortical collecting ducts of AQP1 null mice. However, V(2)R activation did not increase AQP2 protein abundance in the IMCD of AQP1 null mice.


Subject(s)
Aquaporin 1/genetics , Kidney Medulla/cytology , Receptors, Vasopressin/physiology , Animals , Antidiuretic Hormone Receptor Antagonists , Blotting, Western , Cell Proliferation/drug effects , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Deamino Arginine Vasopressin/pharmacology , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Immunohistochemistry , In Situ Hybridization , Kidney Medulla/drug effects , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/drug effects , Kidney Tubules, Collecting/metabolism , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Osmolar Concentration , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/physiology , RNA/biosynthesis , RNA/genetics , Renal Agents/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
6.
J Am Chem Soc ; 129(32): 9964-75, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17658800

ABSTRACT

A stereoselective synthesis of the bis-guanidinium toxin (+)-saxitoxin (STX), the agent infamously associated with red tides and paralytic shellfish poisoning, is described. Our approach to this unique natural product advances through an unusual nine-membered ring guanidine intermediate 39 en route to the tricyclic skeleton that defines STX. The effectiveness of this strategy is notable, as only four steps are needed to transform 39 into the target molecule, including a four-electron alkene oxidation catalyzed by OsCl3. Construction of the critical monocyclic guanidine has been achieved through two channels, the first of which makes use of Rh-catalyzed C-H amination and highlights a novel class of heterocyclic N,O-acetals as iminium ion equivalents for crafting functionalized amines. A second route to 39 relies on a stereoselective acetylide dianion addition to a serine-based nitrone, thereby facilitating the preparation of STX in just 14 linear steps from commercial material.


Subject(s)
Saxitoxin/chemical synthesis , Alkenes/chemistry , Amines/chemical synthesis , Amines/chemistry , Guanidines/chemical synthesis , Guanidines/chemistry , Hydroxylation , Saxitoxin/chemistry , Stereoisomerism
7.
Am J Physiol Renal Physiol ; 292(2): F895-904, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17032941

ABSTRACT

The mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) inhibits monocyte chemotactic protein-1- and stromal-derived factor-1alpha (SDF-1alpha)-mediated chemotaxis and diminishes chemokinesis in macrophage-like RAW264.7 and U937 cells in a manner that may involve attenuation of the intracellular calcium signal. STC1 is strongly induced in the kidney following obstructive injury. We hypothesized that STC1 may serve to attenuate the influx of inflammatory cells to the site of tissue injury. In this study, we examined the effect of STC1 on the migration of freshly isolated human macrophages, neutrophils, and T and B lymphocytes through quiescent or IL-1beta-treated human umbilical vein endothelial cell (HUVEC) monolayers. STC1 inhibited transmigration of macrophages and T lymphocytes through quiescent or IL-1beta-activated HUVECs but did not attenuate the transmigration of neutrophils and B lymphocytes. STC1 regulates gene expression in cultured endothelial cells and is detected on the apical surface of endothelial cells in vivo. The data suggest that STC1 plays a critical role in transendothelial migration of inflammatory cells and is involved in the regulation of numerous aspects of endothelial function.


Subject(s)
Gene Expression Regulation/drug effects , Glycoproteins/physiology , Calcium/metabolism , Cell Movement/drug effects , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Humans , Interleukin-1beta/pharmacology , Kidney/blood supply , Macrophages/physiology , Oligonucleotide Array Sequence Analysis , T-Lymphocytes/physiology
8.
BMC Bioinformatics ; 7: 149, 2006 Mar 17.
Article in English | MEDLINE | ID: mdl-16542461

ABSTRACT

BACKGROUND: The incorporation of statistical models that account for experimental variability provides a necessary framework for the interpretation of microarray data. A robust experimental design coupled with an analysis of variance (ANOVA) incorporating a model that accounts for known sources of experimental variability can significantly improve the determination of differences in gene expression and estimations of their significance. RESULTS: To realize the full benefits of performing analysis of variance on microarray data we have developed CARMA, a microarray analysis platform that reads data files generated by most microarray image processing software packages, performs ANOVA using a user-defined linear model, and produces easily interpretable graphical and numeric results. No pre-processing of the data is required and user-specified parameters control most aspects of the analysis including statistical significance criterion. The software also performs location and intensity dependent lowess normalization, automatic outlier detection and removal, and accommodates missing data. CONCLUSION: CARMA provides a clear quantitative and statistical characterization of each measured gene that can be used to assess marginally acceptable measures and improve confidence in the interpretation of microarray results. Overall, applying CARMA to microarray datasets incorporating repeated measures effectively reduces the number of gene incorrectly identified as differentially expressed and results in a more robust and reliable analysis.


Subject(s)
Analysis of Variance , Databases, Genetic , Models, Statistical , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Animals , Computational Biology/methods , Computational Biology/statistics & numerical data , Computer Simulation/statistics & numerical data , Databases, Genetic/statistics & numerical data , Mice
9.
Am J Physiol Renal Physiol ; 291(1): F218-24, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16478974

ABSTRACT

To identify novel gene targets of vasopressin regulation in the renal medulla, we performed a cDNA microarray study on the inner medullary tissue of mice following a 48-h water restriction protocol. In this study, 4,625 genes of the possible approximately 12,000 genes on the array were included in the analysis, and of these 157 transcripts were increased and 63 transcripts were decreased by 1.5-fold or more. Quantitative, real-time PCR measurements confirmed the increases seen for 12 selected transcripts, and the decreases were confirmed for 7 transcripts. In addition, we measured transcript abundance for many renal collecting duct proteins that were not represented on the array; aquaporin-2 (AQP2), AQP3, Pax-8, and alpha- and beta-Na-K-ATPase subunits were all significantly increased in abundance; the beta- and gamma-subunits of ENaC and the vasopressin type 1A receptor were significantly decreased. To correlate changes in mRNA expression with changes in protein expression, we carried out quantitative immunoblotting. For most of the genes examined, changes in mRNA abundances were not associated with concomitant protein abundance changes; however, AQP2 transcript abundance and protein abundance did correlate. Surprisingly, aldolase B transcript abundance was increased but protein abundance was decreased following 48 h of water restriction. Several transcripts identified by microarray were novel with respect to their expression in mouse renal medullary tissues. The steroid hormone enzyme 3beta-hydroxysteroid dehydrogenase 4 (3betaHSD4) was identified as a novel target of vasopressin regulation, and via dual labeling immunofluorescence we colocalized the expression of this protein to AQP2-expressing collecting ducts of the kidney. These studies have identified several transcripts whose abundances are regulated in mouse inner medulla in response to an increase in endogenous vasopressin levels and could play roles in the regulation of salt and water excretion.


Subject(s)
3-Hydroxysteroid Dehydrogenases/analysis , 3-Hydroxysteroid Dehydrogenases/genetics , Gene Expression Regulation, Enzymologic/physiology , Kidney Medulla/chemistry , Kidney Tubules, Collecting/chemistry , Water Deprivation/physiology , Animals , Aquaporin 2/analysis , Aquaporin 2/genetics , Aquaporin 2/physiology , Aquaporin 3/analysis , Aquaporin 3/genetics , Aquaporin 3/physiology , DNA, Complementary/analysis , Epithelial Sodium Channels , Fructose-Bisphosphate Aldolase/analysis , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/physiology , Kidney Medulla/physiology , Kidney Tubules, Collecting/physiology , Mice , Mice, Inbred ICR , Oligonucleotide Array Sequence Analysis , PAX8 Transcription Factor , Paired Box Transcription Factors/analysis , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/physiology , RNA, Messenger/analysis , Receptors, Vasopressin/analysis , Receptors, Vasopressin/genetics , Receptors, Vasopressin/physiology , Reverse Transcriptase Polymerase Chain Reaction , Sodium Channels/analysis , Sodium Channels/genetics , Sodium Channels/physiology , Sodium-Potassium-Exchanging ATPase/analysis , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/physiology , Vasopressins/blood , Vasopressins/physiology
10.
Am J Physiol Regul Integr Comp Physiol ; 290(1): R251-6, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16081880

ABSTRACT

The adrenal steroid hormone dehydroepiandrosterone (DHEA) and its sulfated derivative [DHEA(S)] have been extensively studied for their potential anti-aging effects. Associated with aging, DHEA levels decline in humans, whereas other adrenal hormones remain unchanged, suggesting that DHEA may be important in the aging process. However, the effect of DHEA(S) supplementation on cardiac function in the aged has not been investigated. Therefore, we administered to young and old female mice a 60-day treatment with exogenous DHEA(S) at a dose of 0.1 mg/ml in the drinking water and compared the effects on left ventricular diastolic function and the myocardial extracellular matrix composition. The left ventricular stiffness (beta) was 0.30 +/- 0.06 mmHg/mul in the older control mice compared with 0.17 +/- 0.02 mmHg/mul in young control mice. Treatment with DHEA(S) decreased left ventricular stiffness to 0.12 +/- 0.03 mmHg/mul in the older mice and increased left ventricular stiffness to 0.27 +/- 0.04 mmHg/mul in young mice. The mechanism for the DHEA(S)-induced changes in diastolic function appeared to be associated with altered matrix metalloproteinase activity and the percentage of collagen cross-linking. We conclude that exogenous DHEA(S) supplementation is capable of reversing the left ventricular stiffness and fibrosis that accompanies aging, with a paradoxical increased ventricular stiffness in young mice.


Subject(s)
Aging/physiology , Dehydroepiandrosterone Sulfate/pharmacology , Diastole/drug effects , Diastole/physiology , Ventricular Function/drug effects , Ventricular Function/physiology , Animals , Collagen/metabolism , Female , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Myocardium/metabolism
11.
Org Lett ; 7(15): 3375-8, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-16018664

ABSTRACT

[reaction: see text]. A new tether for small molecule synthesis is reported. This functionally active tether mediates the desymmetrization of a pseudo-C(2)-symmetric tris-allylic phosphate triester to generate a P-chiral bicyclo[4.3.1]phosphate containing ample steric and stereoelectronic differentiation for investigating chemo-, regio-, and stereoselective transformations. Overall, the method reported herein demonstrates a fundamentally new role of phosphates in synthesis and provides differentiated polyol building blocks for use in natural product synthesis.


Subject(s)
Biological Products/chemistry , Biological Products/chemical synthesis , Phosphates/chemistry , Cyclization , Molecular Structure , Polymers/chemistry , Stereoisomerism
12.
Brain Res Dev Brain Res ; 154(2): 255-8, 2005 Feb 08.
Article in English | MEDLINE | ID: mdl-15707679

ABSTRACT

Neurons in the hypothalamus sense changes in glucose concentration. Glucokinase (GK), a key enzyme for pancreatic (beta)-cell glucose sensing, was found in both the embryonic and adult hypothalamus. GK activity accounted for approximately 20% of total hexokinase (HK) activity in both embryonic and adult hypothalamus with no activity measured in cortical samples, indicating that glucose sensing in the hypothalamus initiates early in development and precedes the maturation of glucose signaling in liver.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Glucokinase/metabolism , Hypothalamus/enzymology , Age Factors , Animals , Animals, Newborn , Blotting, Northern/methods , Blotting, Southern/methods , DNA, Complementary/metabolism , Embryo, Mammalian , Glucokinase/genetics , Glucose/analysis , Hexokinase/metabolism , Hypothalamus/cytology , Hypothalamus/embryology , Hypothalamus/growth & development , In Vitro Techniques , Polymerase Chain Reaction/methods , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
13.
Am J Physiol Renal Physiol ; 288(2): F315-21, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15507545

ABSTRACT

Mice that lack the aquaporin-1 gene (AQP1) lack a functional countercurrent multiplier mechanism, fail to concentrate the inner medullary (IM) interstitium, and present with a urinary concentrating defect. In this study, we use DNA microarrays to identify the gene expression profile of the IM of AQP1 null mice and corresponding changes in gene expression resulting from a loss of a hypertonic medullary interstitium. An ANOVA analysis model, CARMA, was used to isolate the knockout effect while taking into account experimental variability associated with microarray studies. In this study 5,701 genes of the possible approximately 12,000 genes on the array were included in the ANOVA; 531 genes were identified as demonstrating a >1.5-fold up- or downregulation between the wild-type and knockout groups. We randomly selected 35 genes for confirmation by real-time PCR, and 29 of the 35 genes were confirmed using this method. The overall pattern of gene expression in the AQP1 null mice was one of downregulation compared with gene expression in the renal medullas of the wild-type mice. Heat shock proteins 105 and 94, aldose reductase, adenylate kinase 2, aldolase B, aldehyde reductase 6, and p8 were decreased in the AQP1 null mice. Carboxylesterase 3, matrilin 2, lipocalin 2, and transforming growth factor-alpha were increased in IM of AQP1 null mice. In addition, we observed a loss of vasopressin type 2 receptor mRNA expression in renal medullas of the AQP1 null mice. Thus the loss of the hyperosmotic renal interstitium, due to a loss of the concentrating mechanism, drastically altered not only the phenotype of these animals but also their renal medullary gene expression profile.


Subject(s)
Aquaporins/biosynthesis , Aquaporins/genetics , Gene Expression Profiling , Kidney Medulla/physiology , Animals , Aquaporin 1 , Aquaporins/pharmacology , Blood Group Antigens , Gene Expression Regulation , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Phenotype , Polymerase Chain Reaction , Vasopressins/pharmacology
15.
Org Lett ; 4(26): 4673-6, 2002 Dec 26.
Article in English | MEDLINE | ID: mdl-12489958

ABSTRACT

[reaction: see text] The utility of functionalized 1,4-diamines, produced via a temporary phosphorus tether (P-tether)/ring-closing metathesis (RCM)/hydrolysis sequence, is demonstrated in the synthesis of structurally diverse DMP 323 analogues. These 1,4-diamines are transformed into various seven-membered heterocycles via insertion of the appropriate nuclei "X". Subsequent derivatization generates heterocyclic diols that are similar in structure to DMP 323, a notable member of a class of highly potent inhibitors of HIV protease.


Subject(s)
HIV Protease Inhibitors/chemical synthesis , Urea/analogs & derivatives , Urea/chemical synthesis , Alcohols , Azepines , Diamines/chemistry , Heterocyclic Compounds/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL