Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Screen ; 20(6): 768-78, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25851037

ABSTRACT

Fidelity of glycan structures is a key requirement for biotherapeutics, with carbohydrates playing an important role for therapeutic efficacy. Comprehensive glycan profiling techniques such as liquid chromatography (LC) and mass spectrometry (MS), while providing detailed description of glycan structures, require glycan cleavage, labeling, and paradigms to deconvolute the considerable data sets they generate. On the other hand, lectins as probes on microarrays have recently been used in orthogonal approaches for in situ glycoprofiling but require analyte labeling to take advantage of the capabilities of automated microarray readers and data analysis they afford. Herein, we describe a lectin-based microtiter assay (lectin-enzyme-linked immunosorbent assay [ELISA]) to quantify terminal glycan moieties, applicable to in vitro and in-cell glycan-engineered Fc proteins as well as intact IgGs from intravenous immunoglobulin (IVIG), a blood product containing pooled polyvalent IgG antibodies extracted from plasma from healthy human donors. We corroborate our findings with industry-standard LC-MS profiling. This "customizable" ELISA juxtaposes readouts from multiple lectins, focusing on a subset of glycoforms, and provides the ability to discern single- versus dual-arm glycosylation while defining levels of epitopes at sensitivities comparable to MS. Extendable to other biologics, this ELISA can be used stand-alone or complementary to MS for quantitative glycan analysis.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Glycosylation , Lectins/metabolism , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Immunoglobulins, Intravenous/metabolism , Mass Spectrometry , Polysaccharides/metabolism
2.
Proc Natl Acad Sci U S A ; 112(11): E1297-306, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25733881

ABSTRACT

Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc-sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Drug Design , Immunoglobulins, Intravenous/therapeutic use , N-Acetylneuraminic Acid/metabolism , Receptors, Fc/metabolism , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Blister/complications , Blister/drug therapy , Blister/pathology , Disease Models, Animal , Epidermolysis Bullosa Acquisita/complications , Epidermolysis Bullosa Acquisita/drug therapy , Epidermolysis Bullosa Acquisita/pathology , Glycosylation/drug effects , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulins, Intravenous/pharmacokinetics , Immunoglobulins, Intravenous/pharmacology , Mice , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/pathology , Tissue Distribution/drug effects , Treatment Outcome
4.
Bioorg Med Chem ; 18(9): 3307-19, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20363633

ABSTRACT

A novel series of potent thioether benzenesulfonamide inhibitors of carbonic anhydrases II and IV was discovered using structure-based drug design. Synthesis, structure-activity relationship, and optimization of physicochemical properties are described. Low nanomolar potency was achieved, and selected compounds with improved thermodynamic solubility showed promising in vitro inhibition of carbonic anhydrase activity in rabbit iris ciliary body homogenate.


Subject(s)
Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase Inhibitors , Drug Design , Animals , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Crystallography, X-Ray , Humans , Rabbits , Structure-Activity Relationship , Sulfides/chemical synthesis , Sulfides/chemistry , Sulfides/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , Benzenesulfonamides
5.
J Med Chem ; 46(21): 4572-85, 2003 Oct 09.
Article in English | MEDLINE | ID: mdl-14521419

ABSTRACT

The optimization of the pharmacokinetic performance of various 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors following oral administration to either beagle dogs or CM-monkeys is described. The molecules described in this work are composed of a 2-pyridone-containing peptidomimetic binding determinant and an alpha,beta-unsaturated ester Michael acceptor moiety which forms an irreversible covalent adduct with the active site cysteine residue of the 3C enzyme. Modification of the ester contained within these compounds is detailed along with alteration of the P(2) substituent present in the peptidomimetic portion of the inhibitors. The pharmacokinetics of several inhibitors in both dogs and monkeys are described (7 h plasma concentrations after oral administration) along with their human plasma stabilities, stabilities in incubations with human, dog, and monkey microsomes and hepatocytes, Caco-2 permeabilities, and aqueous solubilities. Compounds containing an alpha,beta-unsaturated ethyl ester fragment and either an ethyl or propargyl P(2) moiety displayed the most promising combination of 3C enzyme inhibition (k(obs)/[I] 170 000-223 000 M(-1) s(-1)), antiviral activity (EC(50) = 0.047-0.058 microM, mean vs seven HRV serotypes), and pharmacokinetics following oral administration (7 h dog plasma levels = 0.248-0.682 microM; 7 h CM-monkey plasma levels = 0.057-0.896 microM).


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacology , Rhinovirus/enzymology , Viral Proteins/metabolism , 3C Viral Proteases , Animals , Antiviral Agents/pharmacokinetics , Biological Availability , Blood Proteins/metabolism , Caco-2 Cells , Dogs , Drug Design , Half-Life , Hepatocytes/metabolism , Humans , In Vitro Techniques , Indicators and Reagents , Macaca fascicularis , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver/metabolism , Protease Inhibitors/pharmacokinetics , Protein Binding , Rhinovirus/drug effects , Solubility , Structure-Activity Relationship
6.
J Med Chem ; 45(10): 2016-23, 2002 May 09.
Article in English | MEDLINE | ID: mdl-11985469

ABSTRACT

Utilizing the tools of parallel synthesis and structure-based design, a new class of Michael acceptor-containing, irreversible inhibitors of human rhinovirus 3C protease (HRV 3CP) was discovered. These inhibitors are shown to inhibit HRV-14 3CP with rates of inactivation ranging from 886 to 31 400 M(-1) sec(-1). These inhibitors exhibit antiviral activity when tested against HRV-14 infected H1-HeLa cells, with EC(50) values ranging from 1.94 to 0.15 microM. No cytotoxicity was observed at the limits of the assay concentration. A crystal structure of one of the more potent inhibitors covalently bound to HRV-2 3CP is detailed. These compounds were also tested against HRV serotypes other than type 14 and were found to have highly variable activities.


Subject(s)
Antiviral Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Rhinovirus/drug effects , Viral Proteins/antagonists & inhibitors , 3C Viral Proteases , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Cysteine Endopeptidases , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Protein Binding , Rhinovirus/chemistry , Structure-Activity Relationship
7.
J Med Chem ; 45(8): 1607-23, 2002 Apr 11.
Article in English | MEDLINE | ID: mdl-11931615

ABSTRACT

The structure-based design, chemical synthesis, and biological evaluation of various 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors are described. These compounds are comprised of a peptidomimetic binding determinant and a Michael acceptor moiety, which forms an irreversible covalent adduct with the active site cysteine residue of the 3C enzyme. The 2-pyridone-containing inhibitors typically display improved 3CP inhibition properties relative to related peptide-derived molecules along with more favorable antiviral properties. The cocrystal structure of one pyridone-derived 3CP inhibitor complexed with HRV-2 3CP is also described along with certain ab initio conformation analyses. Optimization of the 2-pyridone-containing compounds is shown to provide several highly active 3CP inhibitors (k(obs)/[I] > 500,00 M(-1) s(-1)) that function as potent antirhinoviral agents (EC(50) = <0.05 microM) against multiple virus serotypes in cell culture. One 2-pyridone-containing 3CP inhibitor is shown to be bioavailable in the dog after oral dosing (F = 48%).


Subject(s)
Antiviral Agents/chemical synthesis , Peptides/chemistry , Protease Inhibitors/chemical synthesis , Pyridones/chemical synthesis , Rhinovirus/enzymology , Viral Proteins/antagonists & inhibitors , 3C Viral Proteases , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Availability , Crystallography, X-Ray , Cysteine Endopeptidases , Dogs , Drug Stability , Humans , In Vitro Techniques , Ligands , Microsomes, Liver/metabolism , Models, Molecular , Molecular Mimicry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , Pyridones/chemistry , Pyridones/pharmacology , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 12(5): 733-8, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11858991

ABSTRACT

The structure-based design, chemical synthesis, and biological evaluation of bicyclic 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors are described. An optimized compound is shown to exhibit antiviral activity when tested against a variety of HRV serotypes (EC(50)'s ranging from 0.037 to 0.162 microM).


Subject(s)
Antiviral Agents/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Cysteine Proteinase Inhibitors/chemical synthesis , Pyridones/chemical synthesis , Rhinovirus/enzymology , Viral Proteins/antagonists & inhibitors , 3C Viral Proteases , Antiviral Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , Humans , Molecular Mimicry , Pyridones/chemistry , Pyridones/pharmacology , Rhinovirus/drug effects , Serotyping , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...