Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
2.
J Bacteriol ; 206(5): e0004824, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38712944

ABSTRACT

Whole genome sequencing has revealed that the genome of Staphylococcus aureus possesses an uncharacterized 5-gene operon (SAOUHSC_00088-00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus as ssc for staphylococcal surface carbohydrate. We found that the ssc genes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed in Escherichia coli and extracted by heat treatment. Ssc was also conjugated to AcrA from Campylobacter jejuni in E. coli using protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting of N-acetylgalactosamine. We further demonstrated that the expression of the ssc genes in S. aureus affected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCE: Surface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens. Staphylococcus aureus produces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide in S. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.


Subject(s)
Polysaccharides, Bacterial , Staphylococcus aureus , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Acetylgalactosamine/analysis , Operon , Escherichia coli/genetics , Gene Expression , Cell Wall/chemistry
3.
Zhonghua Wai Ke Za Zhi ; 62(6): 572-580, 2024 Jun 01.
Article in Chinese | MEDLINE | ID: mdl-38682629

ABSTRACT

Objective: To compare the efficacy of conventional open ankle fusion and three dimensional(3D) printed guide plate assisted arthroscopic ankle fusion. Methods: A retrospective cohort study was performed on 256 patients with advanced traumatic ankle arthritis, who were admitted to the Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from May 2018 to February 2023 and underwent ankle fusion procedures. The study cohort comprised 119 males and 137 females, with an age of (59.6±9.5) years (range: 37 to 83 years). Among them, 175 cases underwent internal fixation with plates and screws (58 cases through the combined medial and lateral approach, and 117 cases through the simple lateral approach), 48 cases underwent internal fixation with screws through the anterior approach (conventional open group), and 33 cases underwent minimally invasive arthroscopic ankle fusion assisted by 3D printed guide plate (3D printed guide plate arthroscopy group). Propensity score matching was employed to achieve a 1∶1 match(caliper value=0.02) between the baseline characteristics of patients in the 3D printed guide plate arthroscopy group and the conventional open group. Perioperative and follow-up data between the two groups were compared using the t-test, Mann-Whitney U test, Wilcoxon signed rank test, χ² test or corrected χ² test as appropriate. Results: Matching was successfully achieved with 20 cases in both the 3D printed guide plate arthroscopy group and the conventional open group, and there were no statistically significant differences in baseline characteristics between the two groups (all P>0.05). The operation time in the 3D printed guide plate arthroscopy group was significantly longer than that in the conventional open group ((88.9±5.6) minutes vs. (77.9±11.7) minutes;t=-2.392, P=0.022), while the frequency of intraoperative fluoroscopies ((1.7±0.8) times vs. (5.2±1.2) times; t=10.604, P<0.01) and length of hospitalization ((5.5±0.9) days vs. (6.4±1.5) days;t=2.480, P=0.018) were significantly lower in the 3D printed guide plate arthroscopy group compared to the conventional open group. The fusion rate was 95.0% (19/20) in the 3D printed guide plate arthroscopy group and 85.0% (17/20) in the conventional open group, with no statistically significant difference between the two groups (χ²=0.278,P=0.598). The fusion time was (12.1±2.0) weeks in the conventional open group and (11.1±1.7) weeks in the 3D printed guide plate arthroscopy group, with no statistically significant difference between the two groups (t=1.607, P=0.116). At the final follow-up, the American Orthopedic Foot and Ankle Society ankle hindfoot scale was (72.6±5.5)points in the 3D printed guide plate arthroscopy group and (70.5±5.8)points in the conventional open group, with no statistically significant difference between the two groups (t=-1.003, P=0.322). The pain visual analogue score of the 3D printed guide plate arthroscopy group was (M(IQR)) 1.50 (1.00) points, lower than that of the conventional open group by 3.00 (1.00) points, with statistically significant differences (Z=-3.937, P<0.01). There was no significant difference in complication rate between the conventional open group and the 3D printed guide plate arthroscopy group (25.0%(5/20) vs. 5.0%(1/20), χ²=1.765,P=0.184). Conclusion: 3D printed guide plate assisted arthroscopic ankle fusion exhibited several advantages, including reduced frequency of fluoroscopies, alleviation of postoperative pain, and decreased complications and length of hospitalization.


Subject(s)
Ankle Joint , Arthrodesis , Arthroscopy , Bone Plates , Printing, Three-Dimensional , Humans , Male , Female , Middle Aged , Retrospective Studies , Arthrodesis/methods , Ankle Joint/surgery , Arthroscopy/methods , Aged , Adult , Aged, 80 and over , Treatment Outcome , Bone Screws , Arthritis/surgery , Minimally Invasive Surgical Procedures/methods
4.
Zhonghua Er Ke Za Zhi ; 62(4): 317-322, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38527501

ABSTRACT

Objective: To explore potential predictors of refractory Mycoplasma pneumoniae pneumonia (RMPP) in early stage. Methods: The prospective multicenter study was conducted in Zhejiang, China from May 1st, 2019 to January 31st, 2020. A total of 1 428 patients with fever >48 hours to <120 hours were studied. Their clinical data and oral pharyngeal swab samples were collected; Mycoplasma pneumoniae DNA in pharyngeal swab specimens was detected. Patients with positive Mycoplasma pneumoniae DNA results underwent a series of tests, including chest X-ray, complete blood count, C-reactive protein, lactate dehydrogenase (LDH), and procalcitonin. According to the occurrence of RMPP, the patients were divided into two groups, RMPP group and general Mycoplasma pneumoniae pneumonia (GMPP) group. Measurement data between the 2 groups were compared using Mann-Whitney U test. Logistic regression analyses were used to examine the associations between clinical data and RMPP. Receiver operating characteristic (ROC) curves were used to analyse the power of the markers for predicting RMPP. Results: A total of 1 428 patients finished the study, with 801 boys and 627 girls, aged 4.3 (2.7, 6.3) years. Mycoplasma pneumoniae DNA was positive in 534 cases (37.4%), of whom 446 cases (83.5%) were diagnosed with Mycoplasma pneumoniae pneumonia, including 251 boys and 195 girls, aged 5.2 (3.3, 6.9) years. Macrolides-resistant variation was positive in 410 cases (91.9%). Fifty-five cases were with RMPP, 391 cases with GMPP. The peak body temperature before the first visit and LDH levels in RMPP patients were higher than that in GMPP patients (39.6 (39.1, 40.0) vs. 39.2 (38.9, 39.7) ℃, 333 (279, 392) vs. 311 (259, 359) U/L, both P<0.05). Logistic regression showed the prediction probability π=exp (-29.7+0.667×Peak body temperature (℃)+0.004×LDH (U/L))/(1+exp (-29.7+0.667×Peak body temperature (℃)+0.004 × LDH (U/L))), the cut-off value to predict RMPP was 0.12, with a consensus of probability forecast of 0.89, sensitivity of 0.89, and specificity of 0.67; and the area under ROC curve was 0.682 (95%CI 0.593-0.771, P<0.01). Conclusion: In MPP patients with fever over 48 to <120 hours, a prediction probability π of RMPP can be calculated based on the peak body temperature and LDH level before the first visit, which can facilitate early identification of RMPP.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Child , Male , Female , Humans , Mycoplasma pneumoniae/genetics , Prospective Studies , Pneumonia, Mycoplasma/diagnosis , C-Reactive Protein/metabolism , L-Lactate Dehydrogenase , Fever , DNA , Retrospective Studies
5.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(12): 2095-2101, 2023 Dec 06.
Article in Chinese | MEDLINE | ID: mdl-38186161

ABSTRACT

Objective: To investigate the risk factors for human cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation in children and the impact of human cytomegalovirus infection on post-transplant immune reconstitution. Methods: A Retrospective Co-Hort study design was used to include 81 children treated with allo-HSCT from January 2020 to March 2022 at the Department of Hematology, Capital Institute of Pediatrics, Beijing, China, and followed up for 1 year. Real-time quantitative PCR was used to detect positive detection of HCMV in children after allo-HSCT, multifactorial logistic regression modeling was used to analyze the risk factors leading to HCMV infection, and generalized estimating equation modeling was used to analyze the effect of HCMV infection on the T-cells of the children who received allo-HSCT. Results: The age M(Q1, Q3) of 81 children was 5.1 years (10 months, 13.8 years), and 50 (61.7%) were male. By the endpoint of follow-up, a total of 50 HCMV-positive cases were detected, with an HCMV detection rate of 61.7%; The results of multifactorial logistic regression modeling showed that children with grade 2-4 aGVHD had a higher risk of HCMV infection compared with grade 0-1 after transplantation [OR (95%CI) value: 2.735 (1.027-7.286)]. The results of generalized estimating equation modeling analysis showed that the number of CD3+T cells in HCMV-positive children after transplantation was higher than that in the HCMV-negative group [RR (95%CI) value: 1.34 (1.008-1.795)]; the ratio of CD4+T/CD8+T cells was smaller than that in the HCMV-negative group [RR (95%CI) value: 0.377 (0.202-0.704)]; the number of CD8+T cells was higher than that in the HCMV-negative group [RR (95%CI) value: 1.435 (1.025-2.061)]; the number of effector memory CD8+T cells was higher than that in the HCMV-negative group [RR (95%CI) value: 1.877 (1.089-3.236)]. Conclusion: Acute graft-versus-host disease may be a risk factor for HCMV infection in children after allo-HSCT; post-transplant HCMV infection promotes proliferation of memory CD8+T-cell populations and affects immune cell reconstitution.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Immune Reconstitution , Male , Humans , Child , Female , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , CD8-Positive T-Lymphocytes
6.
J Bacteriol ; 204(8): e0015222, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35862799

ABSTRACT

Production of capsular polysaccharides in Staphylococcus aureus is transcriptionally regulated by a control region of the cap operon that consists of SigA- and SigB-dependent promoters. A large number of regulators have been shown to affect cap gene expression. However, regulation of capsule is only partially understood. Here we found that SarZ was another regulator that activated the cap genes through the SigA-dependent promoter. Gel electrophoresis mobility shift experiments revealed that SarZ is bound to a broad region of the cap promoter including the SigA-dependent promoter but mainly the downstream region. We demonstrated that activation of cap expression by SarZ was independent of MgrA, which also activated capsule through the SigA-dependent promoter. Our results further showed that oxidative stress with hydrogen peroxide (H2O2) treatments enhanced SarZ activation of cap expression, indicating that SarZ is able to sense oxidative stress to regulate capsule production. IMPORTANCE Expression of virulence genes in Staphylococcus aureus is affected by environmental cues and is regulated by a surprisingly large number of regulators. Much is still unknown about how virulence factors are regulated by environment cues at the molecular level. Capsule is an antiphagocytic virulence factor that is highly regulated. In this study, we found SarZ was an activator of capsule and that the regulation of capsule by SarZ was affected by oxidative stress. These results provide an example of how a virulence factor could be regulated in response to an environmental cue. As the host oxidative defense system plays an important role against S. aureus, this study contributes to a better understanding of virulence gene regulation and staphylococcal pathogenesis.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Immunoglobulin A, Secretory/genetics , Staphylococcus aureus/metabolism , Virulence Factors/metabolism
7.
Methods Mol Biol ; 2341: 117-125, 2021.
Article in English | MEDLINE | ID: mdl-34264467

ABSTRACT

Secreted bacterial proteins are difficult to identify directly from an infection site due to a limited amount of bacteria and presence of a large quantity of host proteins. Here we describe a rat model of orthopedic implant that allows us to harvest bacterial biofilm materials sufficient for identification of bacterial proteins in the biofilm matrix by liquid chromatography-tandem MS (GeLC-MS/MS) analysis.


Subject(s)
Bacterial Proteins/isolation & purification , Biofilms/growth & development , Prosthesis-Related Infections/microbiology , Staphylococcal Infections/diagnosis , Staphylococcus aureus/physiology , Animals , Chromatography, Liquid , Disease Models, Animal , Male , Prostheses and Implants/microbiology , Rats , Staphylococcus aureus/metabolism , Tandem Mass Spectrometry
8.
Mil Med ; 186(Suppl 1): 273-280, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33499479

ABSTRACT

INTRODUCTION: The emergence of more complex Prolonged Field Care in austere settings and the need to assist inexperienced providers' ability to treat patients create an urgent need for effective tools to support care. We report on a project to develop a phone-/tablet-based decision support system for prehospital tactical combat casualty care that collects physiologic and other clinical data and uses machine learning to detect and differentiate shock manifestation. MATERIALS AND METHODS: Software interface development methods included literature review, rapid prototyping, and subject matter expert design requirements reviews. Machine learning algorithm methods included development of a model trained on publicly available Medical Information Mart for Intensive Care data, then on de-identified data from Mayo Clinic Intensive Care Unit. RESULTS: The project team interviewed 17 Army, Air Force, and Navy medical subject matter experts during design requirements review sessions. They had an average of 17 years of service in military medicine and an average of 4 deployments apiece and all had performed tactical combat casualty care on live patients during deployment. Comments provided requirements for shock identification and management in prehospital settings, including support for indication of shock probability and shock differentiation. The machine learning algorithm based on logistic regression performed best among other algorithms we tested and was able to predict shock onset 90 minutes before it occurred with better than 75% accuracy in the test dataset. CONCLUSIONS: We expect the Trauma Triage, Treatment, and Training Decision Support system will augment a medic's ability to make informed decisions based on salient patient data and to diagnose multiple types of shock through remotely trained, field deployed ML models.


Subject(s)
Machine Learning , Military Medicine , Military Personnel , Shock , Humans , Triage
9.
J Bacteriol ; 203(2)2020 12 18.
Article in English | MEDLINE | ID: mdl-33077637

ABSTRACT

Staphylococcus aureus capsule polysaccharide is an important antiphagocytic virulence factor. The cap genes are regulated at the promoter element (Pcap) upstream of the cap operon. Pcap, which consists of a dominant SigB-dependent promoter and a weaker upstream SigA-dependent promoter, is activated by global regulator MgrA. How MgrA activates capsule is unclear. Here, we showed that MgrA directly bound to the Pcap region and affected the SigA-dependent promoter. Interestingly, an electrophoretic mobility shift assay showed that MgrA bound to a large region of Pcap, mainly downstream of the SigA-dependent promoter. We further showed that the ArlRS two-component system and the Agr quorum sensing system activated capsule primarily through MgrA in the early growth phases.IMPORTANCE The virulence of Staphylococcus aureus depends on the expression of various virulence factors, which is governed by a complex regulatory network. We have been using capsule as a model virulence factor to study virulence gene regulation in S. aureus MgrA is one of the regulators of capsule and has a major effect on capsule production. However, how MgrA regulates capsule genes is not understood. In this study, we were able to define the mechanism involving MgrA regulation of capsule. In addition, we also delineated the role of MgrA in capsule regulatory pathways involving the key virulence regulators Agr and Arl. This study further advances our understanding of virulence gene regulation in S. aureus, an important human pathogen.


Subject(s)
Bacterial Capsules/chemistry , Immunoglobulin A, Secretory/physiology , Polysaccharides, Bacterial/physiology , Promoter Regions, Genetic/physiology , Staphylococcus aureus/physiology , Virulence Factors/physiology , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Electrophoretic Mobility Shift Assay , Immunoblotting , Immunoglobulin A, Secretory/genetics , Mutation , Polysaccharides, Bacterial/genetics , RNA, Bacterial/isolation & purification , RNA, Bacterial/physiology , Real-Time Polymerase Chain Reaction , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Reverse Transcription , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence/genetics , Virulence Factors/genetics
10.
Infect Immun ; 87(12)2019 12.
Article in English | MEDLINE | ID: mdl-31591167

ABSTRACT

Virulence genes are regulated by a complex regulatory network in Staphylococcus aureus Some of the regulators are global in nature and affect many downstream genes. MgrA is a multiple-gene regulator that has been shown to activate genes involved in capsule biosynthesis and repress surface protein genes. The goal of this study was to demonstrate the biological significance of MgrA regulation of capsule and surface proteins. We found that strain Becker possessed one fibronectin-binding protein, FnbA, and that FnbA was the predominant protein involved in invasion of nonphagocytic HeLa cells. By genetic analysis of strains with different amounts of capsule, we demonstrated that capsule impeded invasion of HeLa cells by masking the bacterial cell wall-anchored protein FnbA. Using variants with different levels of mgrA transcription, we further demonstrated that MgrA negatively impacted invasion by activating the cap genes involved in capsule biosynthesis and repressing the fnbA gene. Thus, we conclude that MgrA negatively impacts cell invasion of S. aureus Becker by promoting capsule and repressing FnbA.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Capsules/metabolism , Gene Expression Regulation, Bacterial/genetics , Staphylococcal Infections/pathology , Staphylococcus aureus/pathogenicity , Adhesins, Bacterial/genetics , Bacterial Capsules/genetics , Cell Line, Tumor , HeLa Cells , Humans , Polysaccharides, Bacterial/metabolism , Staphylococcal Infections/genetics , Staphylococcus aureus/genetics , Virulence/genetics
12.
Infect Immun ; 87(9)2019 09.
Article in English | MEDLINE | ID: mdl-31209148

ABSTRACT

The SaeRS two-component system in Staphylococcus aureus is critical for regulation of many virulence genes, including hla, which encodes alpha-toxin. However, the impact of regulation of alpha-toxin by Sae on S. aureus pathogenesis has not been directly addressed. Here, we mutated the SaeR-binding sequences in the hla regulatory region and determined the contribution of this mutation to hla expression and pathogenesis in strain USA300 JE2. Western blot analyses revealed drastic reduction of alpha-toxin levels in the culture supernatants of SaeR-binding mutant in contrast to the marked alpha-toxin production in the wild type. The SaeR-binding mutation had no significant effect on alpha-toxin regulation by Agr, MgrA, and CcpA. In animal studies, we found that the SaeR-binding mutation did not contribute to USA300 JE2 pathogenesis using a rat infective endocarditis model. However, in a rat skin and soft tissue infection model, the abscesses on rats infected with the mutant were significantly smaller than the abscesses on those infected with the wild type but similar to the abscesses on those infected with a saeR mutant. These studies indicated that there is a direct effect of hla regulation by SaeR on pathogenesis but that the effect depends on the animal model used.


Subject(s)
Bacterial Proteins/physiology , Bacterial Toxins/metabolism , Gene Expression Regulation, Bacterial , Protein Kinases/physiology , Staphylococcal Infections , Staphylococcus aureus , Animals , Bacterial Toxins/genetics , Rats , Staphylococcal Infections/genetics , Staphylococcal Infections/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence
13.
Zhonghua Yi Xue Za Zhi ; 99(21): 1626-1630, 2019 Jun 04.
Article in Chinese | MEDLINE | ID: mdl-31189260

ABSTRACT

Objective: To discuss the methods and clinical outcomes of selective tarsometatarsal (TMT) arthrodesis for old Lisfranc injury. Methods: The clinical data of 36 cases with old Lisfranc injury treated by selective arthrodesis from January 2010 to October 2016 in the Department of Orthopedics in Shanghai Sixth People's Hospital were analyzed retrospectively. There were 16 males and 20 females in this group with a mean age of (40±6) years. The information of pre-operative and post-operative X-ray, American Orthopaedics Foot and Ankle Society (AOFAS) midfoot score and pain Visual Analogue Scale (VAS) score was collected. The complications were also recorded. The pre- and post-operative data were compared with t test. Results: The 36 patients got a follow-up for at-least 2 years (averaged (4.3±1.6) years, ranged from 2 to 8 years). The post-operative AOFAS midfoot score was improved from (44±7)(28-60) to (83±7)(76-97)(t=-37.1, P<0.05), and the VAS score decreased from (6.3±2.5)(5-9) to (1.6±1.3)(0-3)(t=23.7, P<0.05). Implant breakage occurred in two patients and the symptom was relieved after the removal of implants. Conclusion: The selective TMT arthrodesis for old Lisfranc injury may relieve the symptoms, improve the function and life quality of patients by restoring the medial arch and midfoot and forefoot alignment.


Subject(s)
Arthrodesis , Adult , China , Female , Fracture Fixation, Internal , Fractures, Bone , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
14.
Mol Cell Proteomics ; 18(4): 657-668, 2019 04.
Article in English | MEDLINE | ID: mdl-30617156

ABSTRACT

Bacteria can circumvent the effect of antibiotics by transitioning to a poorly understood physiological state that does not involve conventional genetic elements of resistance. Here we examine antibiotic susceptibility with a Class A ß-lactamase+ invasive strain of Klebsiella pneumoniae that was isolated from a lethal outbreak within laboratory colonies of Chlorocebus aethiops sabaeus monkeys. Bacterial responses to the ribosomal synthesis inhibitors streptomycin and doxycycline resulted in distinct proteomic adjustments that facilitated decreased susceptibility to each antibiotic. Drug-specific changes to proteomes included proteins for receptor-mediated membrane transport and sugar utilization, central metabolism, and capsule production, whereas mechanisms common to both antibiotics included elevated scavenging of reactive oxygen species and turnover of misfolded proteins. Resistance to combined antibiotics presented integrated adjustments to protein levels as well as unique drug-specific proteomic features. Our results demonstrate that dampening of Klebsiella pneumoniae susceptibility involves global remodeling of the bacterial proteome to counter the effects of antibiotics and stabilize growth.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Klebsiella pneumoniae/metabolism , Proteome/metabolism , Animals , Anti-Bacterial Agents/therapeutic use , Cell Wall/drug effects , Cell Wall/metabolism , Chlorocebus aethiops , Drug Resistance, Microbial/drug effects , Intestine, Large/microbiology , Intestine, Large/pathology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Microbial Sensitivity Tests , Proteomics , Ribosomes/drug effects , Ribosomes/metabolism
15.
Cell Host Microbe ; 24(3): 405-416.e3, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30173956

ABSTRACT

Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013-2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.


Subject(s)
Marburg Virus Disease/virology , Marburgvirus/physiology , Primate Diseases/virology , Testis/virology , Animals , Macaca , Male , Marburg Virus Disease/immunology , Marburg Virus Disease/metabolism , Primate Diseases/immunology , Primate Diseases/metabolism , Sertoli Cells/metabolism , Sertoli Cells/virology , Survivors , T-Lymphocytes, Regulatory/immunology , Tight Junctions/metabolism , Tight Junctions/virology
16.
J Bacteriol ; 200(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29967117

ABSTRACT

Capsule is one of many virulence factors produced by Staphylococcus aureus, and its expression is highly regulated. Here, we report the repression of capsule by direct interaction of XdrA and CodY with the capsule promoter region. We found, by footprinting analyses, that XdrA repressed capsule by binding to a broad region that extended from upstream of the -35 region of the promoter to the coding region of capA, the first gene of the 16-gene cap operon. Footprinting analyses also revealed that CodY bound to a large region that overlapped extensively with that of XdrA. We found that repression of the cap genes in the xdrA mutant could be achieved by the overexpression of codY but not vice versa, suggesting codY is epistatic to xdrA However, we found XdrA had no effect on CodY expression. These results suggest that XdrA plays a secondary role in capsule regulation by promoting CodY repression of the cap genes. Oxacillin slightly induced xdrA expression and reduced cap promoter activity, but the effect of oxacillin on capsule was not mediated through XdrA.IMPORTANCEStaphylococcus aureus employs a complex regulatory network to coordinate the expression of various virulence genes to achieve successful infections. How virulence genes are coordinately regulated is still poorly understood. We have been studying capsule regulation as a model system to explore regulatory networking in S. aureus In this study, we found that XdrA and CodY have broad binding sites that overlap extensively in the capsule promoter region. Our results also suggest that XdrA assists CodY in the repression of capsule. As capsule gene regulation by DNA-binding regulators has not been fully investigated, the results presented here fill an important knowledge gap, thereby further advancing our understanding of the global virulence regulatory network in S. aureus.


Subject(s)
Bacterial Capsules/genetics , Bacterial Proteins/genetics , Repressor Proteins/genetics , Staphylococcus aureus/genetics , Binding Sites , Epistasis, Genetic , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Promoter Regions, Genetic , Virulence
17.
Adv Exp Med Biol ; 1062: 303-318, 2018.
Article in English | MEDLINE | ID: mdl-29845541

ABSTRACT

The United States Army Medical Research Institute of Infectious Diseases (USAMRIID) possesses an array of expertise in diverse capabilities for the characterization of emerging infectious diseases from the pathogen itself to human or animal infection models. The recent Zika virus (ZIKV) outbreak was a challenge and an opportunity to put these capabilities to work as a cohesive unit to quickly respond to a rapidly developing threat. Next-generation sequencing was used to characterize virus stocks and to understand the introduction and spread of ZIKV in the United States. High Content Imaging was used to establish a High Content Screening process to evaluate antiviral therapies. Functional genomics was used to identify critical host factors for ZIKV infection. An animal model using the temporal blockade of IFN-I in immunocompetent laboratory mice was investigated in conjunction with Positron Emission Tomography to study ZIKV. Correlative light and electron microscopy was used to examine ZIKV interaction with host cells in culture and infected animals. A quantitative mass spectrometry approach was used to examine the protein and metabolite type or concentration changes that occur during ZIKV infection in blood, cells, and tissues. Multiplex fluorescence in situ hybridization was used to confirm ZIKV replication in mouse and NHP tissues. The integrated rapid response approach developed at USAMRIID presented in this review was successfully applied and provides a new template pathway to follow if a new biological threat emerges. This streamlined approach will increase the likelihood that novel medical countermeasures could be rapidly developed, evaluated, and translated into the clinic.


Subject(s)
Academies and Institutes , Zika Virus Infection/virology , Zika Virus/physiology , Academies and Institutes/trends , Animals , Biomedical Research , Humans , Zika Virus/genetics
18.
Emerg Microbes Infect ; 7(1): 69, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29691373

ABSTRACT

Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.


Subject(s)
Cell Membrane/ultrastructure , Virion/ultrastructure , Zika Virus Infection/virology , Zika Virus/chemistry , Zika Virus/ultrastructure , Animals , Brain/cytology , Brain/virology , Cell Membrane/virology , Chlorocebus aethiops , Host-Pathogen Interactions , Humans , Mice , Microscopy/instrumentation , Microscopy/methods , RNA, Viral/genetics , RNA, Viral/isolation & purification , Vero Cells , Virus Assembly , Virus Internalization , Virus Release , Virus Replication , Zika Virus/physiology , Zika Virus Infection/physiopathology
19.
Sci Rep ; 8(1): 1250, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352230

ABSTRACT

Survivors of Ebola virus infection may become subclinically infected, but whether animal models recapitulate this complication is unclear. Using histology in combination with immunohistochemistry and in situ hybridization in a retrospective review of a guinea pig confirmation-of-virulence study, we demonstrate for the first time Ebola virus infection in hepatic oval cells, the endocardium and stroma of the atrioventricular valves and chordae tendinae, satellite cells of peripheral ganglia, neurofibroblasts and Schwann cells of peripheral nerves and ganglia, smooth muscle cells of the uterine myometrium and vaginal wall, acini of the parotid salivary glands, thyroid follicular cells, adrenal medullary cells, pancreatic islet cells, endometrial glandular and surface epithelium, and the epithelium of the vagina, penis and, prepuce. These findings indicate that standard animal models for Ebola virus disease are not as well-described as previously thought and may serve as a stepping stone for future identification of potential sites of virus persistence.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/pathology , Animals , Endocrine Glands/virology , Female , Genitalia/virology , Guinea Pigs , Heart/virology , Hemorrhagic Fever, Ebola/virology , Liver/virology , Male , Peripheral Nervous System/virology
20.
PLoS One ; 12(11): e0187981, 2017.
Article in English | MEDLINE | ID: mdl-29121106

ABSTRACT

The matrix proteins of Staphylococcus aureus biofilm have not been well defined. Previous efforts to identify these proteins were performed using in vitro systems. Here we use a proteomic approach to identify biofilm matrix proteins directly from infected bone implants using a rat model of orthopedic implant-associated S. aureus infection. Despite heavy presence of host proteins, a total of 28 and 105 S. aureus proteins were identified during acute infection and chronic infection, respectively. Our results show that biofilm matrix contains mostly intracellular cytoplasmic proteins and, to a much less extent, extracellular and cell surface-associated proteins. Significantly, leukocidins were identified in the biofilm matrix during chronic infection, suggesting S. aureus is actively attacking the host immune system even though they are protected within the biofilm. The presence of two surface-associated proteins, Ebh and SasF, in the infected bone tissue during acute infection was confirmed by immunohistochemistry. In addition, a large number of host proteins were found differentially expressed in response to S. aureus biofilm formed on bone implants.


Subject(s)
Arthroplasty/adverse effects , Bacterial Proteins/metabolism , Proteomics/methods , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Animals , Biofilms , Carrier Proteins/metabolism , Disease Models, Animal , Leukocidins/metabolism , Membrane Proteins/metabolism , Rats , Staphylococcal Infections/etiology , Staphylococcus aureus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL