Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genes (Basel) ; 9(10)2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30326664

ABSTRACT

Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialogue between legumes and rhizobia. If so, what part of the molecular dialogue is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses that are required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, which are genes controlling the nodulation process were significantly reduced in Pi-deficient common bean seedlings. In addition, whole-genome transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Moreover, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule numbers, was higher in Pi-deficient seedlings compared to control seedlings. The data presented in this study provides a mechanistic model to better understand how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.

2.
Biochim Biophys Acta ; 1706(1-2): 88-97, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15620368

ABSTRACT

Euglena gracilis lacks a plant-like vacuole and, when grown in Cd2+-containing medium, 60% of the accumulated Cd2+ is located inside the chloroplast. Hence, the biochemical mechanisms involved in Cd2+ accumulation in chloroplast were examined. Percoll-purified chloroplasts showed a temperature-sensitive uptake of the free 109Cd2+ ion. Kinetics of the uptake initial rate was resolved in two components, one hyperbolic and saturable (Vmax 11 nmol 109Cd2+ min(-1) mg protein (-1), Km 13 microM) and the other, linear and non-saturable. 109Cd2+ uptake was not affected by metabolic inhibitors or illumination. Zn2+ competitively inhibited 109Cd2+ uptake (Ki 8.2 microM); internal Cd2+ slightly inhibited 109Cd2+ uptake. Cadmium was partially and rapidly released from chloroplasts. These data suggested the involvement of a cation diffusion facilitator-like protein. Chloroplasts isolated from cells grown with 50 microM CdCl2 (ZCd50 chloroplasts) showed a 1.6 times increase in the uptake Vmax, whereas the Km and the non-saturable component did not change. In addition, Cd2+ retention in chloroplasts correlated with the amount of internal sulfur compounds. ZCd50 chloroplasts, which contained 4.4 times more thiol-compounds and sulfide than control chloroplasts, retained six times more Cd2+. The Cd2+ storage-inactivation mechanism was specific for Cd2+, since Zn2+ and Fe3+ were not preferentially accumulated into chloroplasts.


Subject(s)
Cadmium/metabolism , Chloroplasts/physiology , Euglena gracilis/physiology , Animals , Biological Transport/physiology , Cadmium Radioisotopes , Chloroplasts/metabolism , Euglena gracilis/metabolism , Iron/metabolism , Kinetics , Temperature , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL