Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908368

ABSTRACT

In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.

2.
Cell ; 184(11): 2973-2987.e18, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33945788

ABSTRACT

Stony corals are colonial cnidarians that sustain the most biodiverse marine ecosystems on Earth: coral reefs. Despite their ecological importance, little is known about the cell types and molecular pathways that underpin the biology of reef-building corals. Using single-cell RNA sequencing, we define over 40 cell types across the life cycle of Stylophora pistillata. We discover specialized immune cells, and we uncover the developmental gene expression dynamics of calcium-carbonate skeleton formation. By simultaneously measuring the transcriptomes of coral cells and the algae within them, we characterize the metabolic programs involved in symbiosis in both partners. We also trace the evolution of these coral cell specializations by phylogenetic integration of multiple cnidarian cell type atlases. Overall, this study reveals the molecular and cellular basis of stony coral biology.


Subject(s)
Anthozoa/genetics , Anthozoa/metabolism , Animals , Anthozoa/growth & development , Biomineralization/genetics , Biomineralization/physiology , Calcinosis/genetics , Calcinosis/metabolism , Coral Reefs , Ecosystem , Immunity/genetics , Phylogeny , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Symbiosis/genetics
3.
Front Microbiol ; 8: 1428, 2017.
Article in English | MEDLINE | ID: mdl-28824562

ABSTRACT

Oleaginous microorganisms represent possible platforms for the sustainable production of oleochemicals and biofuels due to their metabolic robustness and the possibility to be engineered. Streptomyces coelicolor is among the narrow group of prokaryotes capable of accumulating triacylglycerol (TAG) as carbon and energy reserve. Although the pathways for TAG biosynthesis in this organism have been widely addressed, the set of genes required for their breakdown have remained elusive so far. Here, we identified and characterized three gene clusters involved in the ß-oxidation of fatty acids (FA). The role of each of the three different S. coelicolor FadAB proteins in FA catabolism was confirmed by complementation of an Escherichia coliΔfadBA mutant strain deficient in ß-oxidation. In S. coelicolor, the expression profile of the three gene clusters showed variation related with the stage of growth and the presence of FA in media. Flux balance analyses using a corrected version of the current S. coelicolor metabolic model containing detailed TAG biosynthesis reactions suggested the relevance of the identified fadAB genes in the accumulation of TAG. Thus, through the construction and analysis of fadAB knockout mutant strains, we obtained an S. coelicolor mutant that showed a 4.3-fold increase in the TAG content compared to the wild type strain grown under the same culture conditions.

4.
Biochem J ; 474(14): 2315-2332, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28588043

ABSTRACT

Trypanosoma cruzi, the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa3 (CcO) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic CcO, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 (Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi, confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more CcO activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on CcO activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being CcO an essential terminal oxidase.


Subject(s)
Electron Transport Complex IV/metabolism , Heme/analogs & derivatives , Protozoan Proteins/metabolism , Trypanosoma cruzi/pathogenicity , Amino Acid Substitution , Animals , Cell Proliferation , Chlorocebus aethiops , Computational Biology , Databases, Protein , Expert Systems , Gene Knockout Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heme/biosynthesis , Isoenzymes/genetics , Isoenzymes/metabolism , Life Cycle Stages , Mutagenesis, Site-Directed , Mutation , Protein Subunits/genetics , Protein Subunits/metabolism , Protozoan Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Trypanosoma cruzi/cytology , Trypanosoma cruzi/growth & development , Vero Cells
5.
Appl Microbiol Biotechnol ; 101(8): 3043-3053, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28275821

ABSTRACT

Conventional petroleum-based chemical industry, although economically still thriving, is now facing great socio-political challenges due to the increasing concerns on climate change and limited availability of fossil resources. In this context, microbial production of fuels and commodity oleochemicals from renewable biomass is being considered a promising sustainable alternative. The increasing understanding of cellular systems has enabled the redesign of microbial metabolism for the production of compounds present in many daily consumer products such as esters, waxes, fatty acids (FA) and fatty alcohols. Small aliphatic esters are important flavour and fragrance elements while long-chain esters, composed of FA esterified to fatty alcohols, are widely used in lubricant formulas, paints, coatings and cosmetics. Here, we review recent advances in the biosynthesis of these types of mono alkyl esters in vivo. We focus on the critical ester bond-forming enzymes and the latest metabolic engineering strategies employed for the biosynthesis of a wide range of products ranging from low-molecular-weight esters to waxy compounds.


Subject(s)
Escherichia coli/metabolism , Esters/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Saccharomyces cerevisiae/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Biofuels , Escherichia coli/enzymology , Escherichia coli/genetics , Esters/chemistry , Fatty Acids/metabolism , Fatty Alcohols/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
6.
Biotechnol Biofuels ; 9: 215, 2016.
Article in English | MEDLINE | ID: mdl-27757170

ABSTRACT

BACKGROUND: Microbial synthesis of oleochemicals derived from native fatty acid (FA) metabolism has presented significant advances in recent years. Even so, native FA biosynthetic pathways often provide a narrow variety of usually linear hydrocarbons, thus yielding end products with limited structural diversity. To overcome this limitation, we took advantage of a polyketide synthase-based system from Mycobacterium tuberculosis and developed an Escherichia coli platform with the capacity to synthesize multimethyl-branched long-chain esters (MBE) with novel chemical structures. RESULTS: With the aim to initiate the characterization of these novel waxy compounds, here, we describe the chassis optimization of the MBE producer E. coli strain for an up-scaled oil production. By carrying out systematic metabolic engineering, we improved the final titer to 138.1 ± 5.3 mg MBE L-1 in batch cultures. Fed-batch microbial fermentation process was also optimized achieving a maximum yield of 790.2 ± 6.9 mg MBE L-1 with a volumetric productivity of 15.8 ± 1.1 mg MBE (L h)-1. Purified MBE oil was subjected to various physicochemical analyses, including differential scanning calorimetry (DSC) and pressurized-differential scanning calorimetry (P-DSC) studies. CONCLUSIONS: The analysis of the pour point, DSC, and P-DSC data obtained showed that bacterial MBE possess improved cold flow properties than several plant oils and some chemically modified derivatives, while exhibiting high oxidation stability at elevated temperatures. These encouraging data indicate that the presence of multiple methyl branches in these novel esters, indeed, conferred favorable properties which are superior to those of linear esters.

7.
Metab Eng ; 24: 97-106, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24831705

ABSTRACT

Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate.


Subject(s)
Esters/metabolism , Fatty Acids/metabolism , Metabolic Engineering , Mycobacterium tuberculosis , Polyketides/metabolism , Acyltransferases/biosynthesis , Acyltransferases/genetics , Carbon-Sulfur Ligases/biosynthesis , Carbon-Sulfur Ligases/genetics , Escherichia coli/enzymology , Escherichia coli/genetics
8.
Biotechnol Biofuels ; 7(1): 172, 2014.
Article in English | MEDLINE | ID: mdl-25593590

ABSTRACT

BACKGROUND: Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations. RESULTS: The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppß, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lppß genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the ß-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPß rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L(-1) at the end of the process. CONCLUSIONS: This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting factors to achieve higher yields of the storage compound. Therefore, in order to develop a competitive process for neutral lipid production in E. coli, it is still necessary to better understand the native regulation of the carbon flow metabolism of this organism, and in particular, to improve the levels of DAG biosynthesis.

9.
Microb Cell Fact ; 12: 9, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23356794

ABSTRACT

BACKGROUND: Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. Despite the importance of PAP activity in TAG producing bacteria, studies to establish its role in lipid metabolism have been so far restricted only to eukaryotes. Considering the increasing interest of bacterial TAG as a potential source of raw material for biofuel production, we have focused our studies on the identification and physiological characterization of the putative PAP present in the TAG producing bacterium Streptomyces coelicolor. RESULTS: We have identified two S. coelicolor genes, named lppα (SCO1102) and lppß (SCO1753), encoding for functional PAP proteins. Both enzymes mediate, at least in part, the formation of DAG for neutral lipid biosynthesis. Heterologous expression of lppα and lppß genes in E. coli resulted in enhanced PAP activity in the membrane fractions of the recombinant strains and concomitantly in higher levels of DAG. In addition, the expression of these genes in yeast complemented the temperature-sensitive growth phenotype of the PAP deficient strain GHY58 (dpp1lpp1pah1). In S. coelicolor, disruption of either lppα or lppß had no effect on TAG accumulation; however, the simultaneous mutation of both genes provoked a drastic reduction in de novo TAG biosynthesis as well as in total TAG content. Consistently, overexpression of Lppα and Lppß in the wild type strain of S. coelicolor led to a significant increase in TAG production. CONCLUSIONS: The present study describes the identification of PAP enzymes in bacteria and provides further insights on the genetic basis for prokaryotic oiliness. Furthermore, this finding completes the whole set of enzymes required for de novo TAG biosynthesis pathway in S. coelicolor. Remarkably, the overexpression of these PAPs in Streptomyces bacteria contributes to a higher productivity of this single cell oil. Altogether, these results provide new elements and tools for future cell engineering for next-generation biofuels production.


Subject(s)
Bacterial Proteins/metabolism , Phosphatidate Phosphatase/metabolism , Streptomyces coelicolor/enzymology , Triglycerides/biosynthesis , Bacterial Proteins/classification , Bacterial Proteins/genetics , Diglycerides/metabolism , Escherichia coli/metabolism , Phosphatidate Phosphatase/classification , Phosphatidate Phosphatase/genetics , Plasmids/genetics , Plasmids/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces cerevisiae/metabolism
10.
Enzyme Res ; 2011: 873230, 2011.
Article in English | MEDLINE | ID: mdl-21603276

ABSTRACT

Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...